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Motivation

e Many-query problems can impose a formidable computational burden

¢ Solution approximations can exchange fidelity for speed
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Introduction
o

Solution Approximations

¢ Inexact solutions: When solving nonlinear equations, prematurely
terminate iterations
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Solution Approximations

¢ Lower-fidelity models: Neglect physical phenomena, coarsen the
mesh, or use lower-order finite differences or elements
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Solution Approximations

¢ Reduced-order models: Approximate solution with a linear
combination of m, < Ny basis functions

= +
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Uncertainty Quantification

¢ Solution approximations require less time than high-fidelity models
but introduce an error (i.e., epistemic uncertainty)

e Ultimate task should account for all sources of uncertainty

e We quantify the uncertainty by

1) engineering features informative of the error
* cheaply computable

* generated by approximate model

2) applying machine learning regression techniques to construct a
mapping from these features to a distribution of the error

e This work matures our previously developed capabilities:
— Hand-selecting one feature and applying Gaussian process regression

M. Drohmann and K. Carlberg (2015)
— Modeling dynamical systems error using machine learning methods
S. Trehan et al. (2017)
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Parameterized Systems of Nonlinear Equations

¢ Parameterized systems of nonlinear equations

r: RV x RNe — RNu residual, nonlinear in at least u(g)
— u: RN — RMu state (solution vector)

— p € D parameters in parameter domain D C RNw

e Scalar-valued quantity of interest

s : RV» — R quantity of interest

— ¢ : RM = R quantity of interest functional
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Parameterized Nonlinear Equations
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oximate Solutions

e Computing the exact solution u(p) can be

— prohibitively expensive (large Ny,)

— unnecessary (inexact solutions suffice for optimization convergence)
e Such cases require an approximate solution @ : RV+ — RNu

e Approximate solution leads to approximated quantity of interest

where §: RV 5 R
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-oximate Solutions (continued)

We consider 3 approaches for computing approximate solutions:
1) Inexact solutions
2) Lower-fidelity models

3) Model reduction
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Parameterized Nonlinear Equations
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Inexact Solutions

e Iterative solution to nonlinear equations: sequence of approximations

u(’“), k=0,....K

e Approximate solution u®) can be obtained after iteration K
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Parameterized Nonlinear Equations
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Lower-Fidelity Models

Fidelity reduction approaches
¢ Neglect physical phenomena
¢ Reduce spatial fidelity
— Use lower-order finite differences or elements
— Coarsen the mesh and prolongate (interpolate) the solution:

u=p(ur), p:RYur - R
/‘/P

@ Sandia National Laboratories



Parameterized Nonlinear Equations
0000e

Model Reduction

Model reduction restricts approximate solution 11 to my-dimensional
affine trial subspace Ran(®,,) + 11 C RN with my, < Ny:

= +

Second step projects residual onto an my-dimensional test subspace
Ran(¥,) C RMu:
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Parameterized Nonlinear Equations
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broaches for Error Quantification

¢ Essential to quantify error incurred by approximate solution

o Existing approaches include
— Data-fit mapping between parameters and the error
— Reduced-Order Model Error Surrogates (ROMES) method
M. Drohmann and K. Carlberg, 2015
* Quantity-of-interest error approximated using dual-weighted residuals

* Normed state-space error approx. using residual norm and error bounds

e We focus on quantifying two errors:

1) Error in quantity of interest: ds(p) := s(p) — ()

2) Normed state-space error: o, () := ||le(u)]]2, where e(p) :== u(p) — a(w)

@ Sandia National Laboratories


https://doi.org/10.1137/140969841

Parameterized Nonlinear Equations
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Error in Quantity of Interest: Dual-Weighted Residual

Approximate residual about approximate solution u:

r(u(p);ip) =0 =r(a(p);p) + gl(ﬁ(u);u) (u(p) — a(w) +O(lle(m)[*)
—— v —_———

I()
Rearrange to approximate state-space error: =-J(p™ + O(|le(w)]|?) (1)
. g , . ‘
Approximate quantity of interest about a: s(u) = §(p) + d—q(u(u)) +O(lle(w)|?)
v

Combine with state-space error approximation (1):

ds(p) = *(f)j,(fl(ﬂ«))J(u)*1 +O(lle(r)[?)
: dual or adjoint

Dual-weighted residual d is weighted sum of residual elements:

Nu
d(p) == = wi(w)ri(p)
i=1
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Drawbacks to using the Dual-Weighted Residual

e Computational Cost: requires solving IV linear equations
e Implementation: requires Jacobian — not always available
¢ Uncertainty Quantification: low-bias error estimate not assured

Nonetheless, structure provides insight into quantity-of-interest error
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Normed State-Space Error

¢ Residual-based bounds commonly used a posteriori to quantify d, ()
A. Buffa et al., 2012; M. A. Grepl and A. T. Patera, 2005; G. Rozza et al., 2008

e Assuming Lipschitz continuity for the residual r(-; @), then

[r(p)]] [r ()
W < 5u(N) < W?

where o and 3 are Lipschitz constants

¢ Drawbacks to using error bounds

— Sharpness: upper/lower bounds can overpredict /underpredict actual
error by several orders of magnitude

— Implementation: difficult to compute true Lipschitz constants

— Uncertainty Quantification: do not produce statistical distribution
over dy,(p) — cannot quantify epistemic uncertainty

@ Sandia National Laboratories


https://doi.org/10.1051/m2an/2011056
https://doi.org/10.1051/m2an:2005006
https://doi.org/10.1007/s11831-008-9019-9

or Models

Outline

e Machine-Learning Error Models
— Overview
— Feature Engineering
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erview

e We aim to construct statistical models of
— quantity-of-interest error d,

— normed state-space error dy

e We apply high-dimensional regression methods from machine learning

e We use a larger number of inexpensive error indicators, resulting in
less costly, more accurate error models

Sandia National Laboratories
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Error Model

e Assume there exist Ny error indicators or features x(pu) € RVx
— available from solution approximation
— cheaply computable

— informative of the error 6(p) € R

e We model the nondeterministic mapping x(p) — 0()

o(p) = f(x(p) + e(x(p))

e f: deterministic regression function
e ¢: stochastic noise

— Mean-zero random variable
— Accounts for irreducible error due to omitted explanatory variables

— Epistemic — additional features can enable zero noise

@ Sandia National Laboratories
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Regression Model

e Regression function defines conditional expectation of error given the

features:

E[0(p) |x(p)] = f(x(n))

e We construct models of
— deterministic regression function f (= f)
— stochastic noise é(= €),
which yield a statistical model for the approximate-solution error
() = [f(x(n) +éx(p))

~\— = N——

stochastic deterministic  stochastic

(o2
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Regression Model Objectives

e Low Cost: Should employ cheaply computable features x

¢ Low Noise Variance: Should exhibit low noise variance, reduce
epistemic uncertainty introduced by approximate solution

¢ Generalize: Empirical distributions of 6 and & should be close on test
set not used to train model — should not overfit on training data

@ Sandia National Laboratories
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Regression Model Construction Steps

1) Feature engineering
— Cheaply computable features x from approximate model
— Informative of the error — construct low-noise-variance model

— Low dimensional (small Ny) such that less training data are needed

2) Regression-function approximation

— Construct f using regression methods from machine learning

— Approximate mapping from features x to error § using a training set

3) Noise approximation

— Mean-zero, constant-variance Gaussian random variable: é ~ N(0,52)

— &2 is sample variance of regression-model noise on a test set

(mean squared error on test set)
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Training
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Training

)

High-Fidelity Model ]

Parameters p

'R

Approximate Model ]
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Training

High-Fidelity Model
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Approximate Model
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Feature Engineering: Parameters

e The mapping p +— J(p) is deterministic, but often complex

ROM
Train

— Can be oscillatory for ROMs since 6(p) ~ 0 when p € D

e Could yield zero noise variance if
— Large amount of training data

— High-capacity regression model

e Typically low-quality features

e Inspired by ‘multifidelity correction’” methods for optimization
Alexandrov et al., 2001; Gano et al., 2005; Eldred et al., 2004
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Feature Engineering: Dual-Weighted Residual

e First-order approximation of Qol error ()
e Small number (Nx = 1) of high-quality features

e High computational cost and significant implementation effort

ROMES method uses approximation for dual-weighted residual
M. Drohmann and K. Carlberg, 2015
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Error Models
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Feature Engineering: Parameters and Residual ( roximations)

x(p) = [p; x(p)]
* DWR is weighted sum of residual vector elements d(pu) := y ()
e Avoids implementation and costs associated with dual vector y(u)
» Large number (Nx = N, + Ny) of low-quality features

e Approaches to reduce number of features and improve quality

— Use m, < Ny principal component coefficients: ()
— Sample n, < N, elements of residual: Pr(u), where P € {0,1}"r*Nu
— Use my < Ny gappy principal component coefficients: Tq(p)

@ Sandia National Laboratories
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Feature Engineering: Residual Norm with/without Parameters

x(p) = lr(p)llz - or x(p) = [m; [[r(p)ll2]
e DWR can be bounded using the Cauchy—Schwarz inequality:
()] < lly ()l 2][e () |2

e Normed state-space error dy () can be bounded:

M. Drohmann and K. Carlberg, 2015

IN
=
3

Il < 5, ()

=

e p can be omitted (x(u) = ||r(w)l]2) if
— p is not indicative of error
— N, is too large relative to training data

e Requires computing entire residual vector r(u)

e Small number of potentially low-quality features

@ Sandia National Laboratories



https://doi.org/10.1137/140969841

Error Models
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Regression-Function Approximation

We consider several different regression models

e Ordinary least squares (OLS)
— Linear (OLS: Linear)

— Quadratic expansion of features (OLS: Quadratic)

* Support vector regression (SVR)
— Linear kernel (SVR: Linear)
— Gaussian (radial basis function) kernel (SVR: RBF)

e Random forest (RF)
* k-nearest neighbors (k-NN)

e Artificial neural network (ANN)
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Training and Test Data

Training Data
e Set of parameter training instances Diain C D
e Train regression models from high-fidelity and approx. solutions

Cross-validated to tune regression-model hyper-parameters
e Used to compute principal components of residuals

Test Data

e Set of parameter test instances Diest C D not used for training
(Dtrain N Dtest — (b)

e Used to assess regression models and quantify stochastic noise

@ andia National Laboratories
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Outline

e Numerical Experiments
Cube: Reduced-Order Modeling
— PCAP: Reduced-Order Modeling
— Burgers’ Equation: Inexact Solutions and Coarse Solution
Prolongation
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Cube: Reduced-Order Modeling

e Applied traction (Neumann boundary condition)

e Planar constraint (Dirichlet boundary condition)

@ Sandia National Laboratories



Experiments

[e] lele]e}

Cube: Overview

e Ny = 3410 — deliberately small to compute d(pu) and use r(u)

e N, = 3 parameters: pu = [E; v; t]
E €[75,125] GPa, v €[0.20, 0.35], t € [40, 60] GPa

e 8 HF runs — up to my = 8 ROM basis vectors (2 used — 99.49%)

@ Sandia National Laboratories
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Cube: Variance Unexplained for Qol Error Prediction

bu, logig (1—1?) byt logyg (1 —1?)

OLS: Linear

OLS: Quadratic

SVR: Linear

SVR: RBF

RF

k-NN

Regression Methods

ANN

I
=
W

1
15 Pr] (v

Features Features

Sandia National Laboratories



Experiments

[e]e] le]e}

Cube: Variance Unexplained for Qol Error Prediction

bu, logig (1—1?)

OLS: Linear

OLS: Quadratic

SVR: Linear

Regression Methods

SVR: RBF
RF
E-NN
ANN
2|l=E g g gggg®®=JF 2
£ e s
O N
Features Features

e [Ir[|2 yields highest variance unexplained
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Cube: Variance Unexplained for Qol Error Prediction
bu, logig (1—1?)

RS

OLS: Linear

OLS: Quadratic

SVR: Linear

Regression Methods

SVR: RBF
RF
E-NN
ANN
’;: = = |E I
s 1 i
TR
= =
A =
i =2
Features Features

* dy, and dy, yield moderate variance unexplained, but are costly
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Cube: Variance Unexplained for Qol Error Prediction

bu, logig (1—1?) byt logyg (1 —1?)

OLS: Linear

OLS: Quadratic

Regression Methods

I
=
W

15
[1; Pr] (ny

Features Features

¢ SVR: RBF and ANN yield lowest variance unexplained
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Cube: Variance Unexplained for Qol Error Prediction
bu,t logig (1—1?)

IS

OLS: Linear

OLS: Quadratic

SVR: Linear

Regression Methods

SVR: RBF
RF
E-NN
ANN
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Features Features

e [p; ] and [p; Pr] yield low variance unexplained with only 10 samples (compared to Ny = 3410)
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Cube: Normed State-Space Error Predictions

7

6 )

5t ||
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g s A o e
C PYs ‘// r?=0.98981, MSE=7.717x10"%

0 2=0.99652, MSE=2.636x 10"

-1

0 1 2 3 1 5 6 7

Predicted error, dy

e Our method beats previous state-of-the-art methods with 2 > 0.996
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sment Project: Reduced-Order Modeling

Deformation
Magnitude [m]
0.011

0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

e Applied pressure (Neumann boundary condition)

e Planar constraint (Dirichlet boundary condition)
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PCAP: O

Ny = 274,954 for quarter of domain

N,, = 3 parameters: p = [E; v; p]
E €[50, 100] GPa, v €[0.20, 0.35], pe [6, 10] GPa

8 HF runs — up to my, = 8 ROM basis vectors (5 used — 99.90%)

30 parameter training instances for regression model
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PCAP: Basis Vectors

2: 95.69% 3: 99.35%

4: 99.77% 5: 99.90%
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PCAP: Variance Unexplained for Qol Error Prediction
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PCAP: Variance Unexplained for Qol Error Prediction

b, 1ogyo (1 —17) byt logyg (1 —1?)

OLS: Linear

OLS: Quadratic

SVR: Linear

Regression Methods
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PCAP: Variance Unexplained for Qol Error Prediction

b, 1ogyo (1 —17) byt logyg (1 —1?)

OLS: Linear

OLS: Quadratic

SVR: Linear

SVR: RBF

Regression Methods

e
=
Z

10)

llell2

= B = = 7 5 g g = =
= TR ﬁ s = i = = ﬁ S S i
g & & & = L L g £ g & L
T EFE =2 2= £ ¥ r oz - =
T oy A % E F o g o= T OE
i 2 3 L& g 2 s & % g
= EQ = EQ
Features Features

e RF and k-NN yield highest variance unexplained
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PCAP: Variance Unexplained for Qol Error Prediction
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PCAP: Variance Unexplained for Qol Error Prediction
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e [p; ] and [p; Pr] yield low variance unexplained with only 10 samples (compared to Ny = 274, 954)
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PCAP: Normed State-Space Error Predictions

1.0

0.8

0.6

0.4

0.0

—0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Predicted error, dy

e Our method beats previous state-of-the-art methods with 2 > 0.998
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Burgers’ Equation: Inexact Solutions and Coarse Solution Prolongation

]
2 — :
1 - 0 ]
. . N
Uy — —Uge = @ SIN 27X _— \
R = 0F I
: ——
w(0) =ua, u(l)=-us S -
-2 [ ————y
-3 L L L L
0.0 0.2 0.4 0.6 0.8 1.0
e Ny = 1999 x

o N, = 3 parameters: p = [o; uq; R]
- a€[0.1,2.0], wu,€][0.1,2.0], Re[50,1000]

e Quantity of interest s is the slope m at z = %

e K=1and K =2 or Nup = 499 and N,

UuLpr
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Experiments

Burgers’ Equation, Inexact Solutions: Qol Error Predictions
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Predicted error, 4, [x107]

e Our method beats previous state-of-the-art method with 72 > 0.9999
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Burgers’ Equation, Coarse Mesh Prolongation: Qol Error Predictions

2

0 — Exact
g P
b 9 ./I' ] OLS: Quadratic
= 2 2=0.97913, MSE=4.032x10?
- 1 =&
2 SVR: RBF
° 72=0.99979, MSE=4.091
g -6 1
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- 2=0.99996, MSE=7.853x10""
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Predicted error, 4, [x107]

o Our method beats previous state-of-the-art methods with 72 > 0.9999
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e Summary
— Feature Choices
— Feature Reduction
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Summary
o

Feature Choices

e Norm of the residual, [|r2
Low-quality single feature

— Expensive to compute and performs poorly

¢ Dual-weighted residual, d
— High-quality single feature
— Performs well for small amounts of training data

Very expensive to compute

e Parameters u
— Only perform well with SVR: RBF or ANN
— Do not perform well with OLS: Linear

» Parameters and gappy principal components of residual, [p; ']
Perform the best with 72 > 0.996 for each experiment

— Only require about 13 features

@ Sandia National Laboratories



Summary
L]

Feature Reduction

e Gappy PCA more effective than directly sampling the residual

e Little benefit to using n, > 100 samples; more samples are more
expensive and do not perform much better

e Often, only n, = 10 samples are necessary to get accurate prediction

@ Sandia National Laboratories
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