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Motivation

• Many-query problems can impose a formidable computational burden

• Solution approximations can exchange fidelity for speed

Freno et al. Machine-Learning Error Models for Approximate Solutions 4 / 50
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Solution Approximations

• Inexact solutions: When solving nonlinear equations, prematurely
terminate iterations

• Lower-fidelity models: Neglect physical phenomena, coarsen the
mesh, or use lower-order finite differences or elements

• Reduced-order models: Approximate solution with a linear
combination of mu � Nu basis functions
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zũ(µ) = Φuû(µ) + ū
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Uncertainty Quantification

• Solution approximations require less time than high-fidelity models
but introduce an error (i.e., epistemic uncertainty)

• Ultimate task should account for all sources of uncertainty

• We quantify the uncertainty by

1) engineering features informative of the error

· cheaply computable· generated by approximate model

2) applying machine learning regression techniques to construct a
mapping from these features to a distribution of the error

• This work matures our previously developed capabilities:
– Hand-selecting one feature and applying Gaussian process regression

M. Drohmann and K. Carlberg (2015)

– Modeling dynamical systems error using machine learning methods
S. Trehan et al. (2017)

Freno et al. Machine-Learning Error Models for Approximate Solutions 6 / 50
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Parameterized Systems of Nonlinear Equations

• Parameterized systems of nonlinear equations

r(u(µ);µ) = 0

– r : RNu × RNµ → RNu residual, nonlinear in at least u(µ)

– u : RNµ → RNu state (solution vector)

– µ ∈ D parameters in parameter domain D ⊆ RNµ

• Scalar-valued quantity of interest

s(µ) := g(u(µ))

– s : RNµ → R quantity of interest

– g : RNu → R quantity of interest functional

Freno et al. Machine-Learning Error Models for Approximate Solutions 8 / 50
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Approximate Solutions

• Computing the exact solution u(µ) can be

– prohibitively expensive (large Nu)

– unnecessary (inexact solutions suffice for optimization convergence)

• Such cases require an approximate solution ũ : RNµ → RNu

• Approximate solution leads to approximated quantity of interest

s̃(µ) := g(ũ(µ)),

where s̃ : RNµ → R

Freno et al. Machine-Learning Error Models for Approximate Solutions 9 / 50
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Approximate Solutions (continued)

We consider 3 approaches for computing approximate solutions:

1) Inexact solutions

2) Lower-fidelity models

3) Model reduction

Freno et al. Machine-Learning Error Models for Approximate Solutions 10 / 50
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Inexact Solutions

• Iterative solution to nonlinear equations: sequence of approximations

u(k), k = 0, . . . ,K

• Approximate solution u(K̃) can be obtained after iteration K̃

ũ(µ) = u(K̃)

1 K̃ K

Iterations
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Lower-Fidelity Models

Fidelity reduction approaches

• Neglect physical phenomena

• Reduce spatial fidelity

– Use lower-order finite differences or elements

– Coarsen the mesh and prolongate (interpolate) the solution:

ũ = p(uLF), p : RNuLF → RNu

xy

z

xy

z
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Model Reduction

Model reduction restricts approximate solution ũ to mu-dimensional
affine trial subspace Ran(Φu) + ū ⊆ RNu with mu � Nu:

ũ(µ) = Φuû(µ) + ū
• Φu ∈ RNu×mu

? trial basis

• û : RNµ → Rmu generalized coordinates
of approximate solution

• ū ∈ RNu prescribed reference state

Second step projects residual onto an mu-dimensional test subspace
Ran(Ψu) ⊆ RNu :

ΨT
ur(Φuû(µ) + ū;µ) = 0

• Ψu ∈ RNu×mu
? test basis

Freno et al. Machine-Learning Error Models for Approximate Solutions 13 / 50
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Approaches for Error Quantification

• Essential to quantify error incurred by approximate solution

• Existing approaches include

– Data-fit mapping between parameters and the error

– Reduced-Order Model Error Surrogates (ROMES) method

M. Drohmann and K. Carlberg, 2015· Quantity-of-interest error approximated using dual-weighted residuals· Normed state-space error approx. using residual norm and error bounds

• We focus on quantifying two errors:

1) Error in quantity of interest: δs(µ) := s(µ)− s̃(µ)

2) Normed state-space error: δu(µ) := ‖e(µ)‖2, where e(µ) := u(µ)− ũ(µ)

Freno et al. Machine-Learning Error Models for Approximate Solutions 14 / 50
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Error in Quantity of Interest: Dual-Weighted Residual

Approximate residual about approximate solution ũ:

r(u(µ);µ) = 0 = r(ũ(µ);µ)︸ ︷︷ ︸
r(µ)

+
∂r

∂v
(ũ(µ);µ)

︸ ︷︷ ︸
J(µ)

(u(µ)− ũ(µ))︸ ︷︷ ︸
e(µ)

+O(‖e(µ)‖2)

Rearrange to approximate state-space error: e(µ) = −J(µ)−1r(µ) +O(‖e(µ)‖2) (1)

Approximate quantity of interest about ũ: s(µ) = s̃(µ) +
∂g

∂v
(ũ(µ))e(µ) +O(‖e(µ)‖2)

Combine with state-space error approximation (1):

δs(µ) = − ∂g
∂v

(ũ(µ))J(µ)−1

︸ ︷︷ ︸
y(µ)T : dual or adjoint

r(µ) +O(‖e(µ)‖2)

Dual-weighted residual d is weighted sum of residual elements:

d(µ) := y(µ)T r(µ) =

Nu∑

i=1

yi(µ)ri(µ)

Freno et al. Machine-Learning Error Models for Approximate Solutions 15 / 50
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Drawbacks to using the Dual-Weighted Residual

• Computational Cost: requires solving Nu linear equations

• Implementation: requires Jacobian – not always available

• Uncertainty Quantification: low-bias error estimate not assured

Nonetheless, structure provides insight into quantity-of-interest error

Freno et al. Machine-Learning Error Models for Approximate Solutions 16 / 50
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Normed State-Space Error

• Residual-based bounds commonly used a posteriori to quantify δu(µ)

A. Buffa et al., 2012; M. A. Grepl and A. T. Patera, 2005; G. Rozza et al., 2008

• Assuming Lipschitz continuity for the residual r(·;µ), then

‖r(µ)‖
β(µ)

≤ δu(µ) ≤ ‖r(µ)‖
α(µ)

,

where α and β are Lipschitz constants

• Drawbacks to using error bounds

– Sharpness: upper/lower bounds can overpredict/underpredict actual
error by several orders of magnitude

– Implementation: difficult to compute true Lipschitz constants

– Uncertainty Quantification: do not produce statistical distribution
over δu(µ) – cannot quantify epistemic uncertainty

Freno et al. Machine-Learning Error Models for Approximate Solutions 17 / 50
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Overview

• We aim to construct statistical models of

– quantity-of-interest error δs

– normed state-space error δu

• We apply high-dimensional regression methods from machine learning

• We use a larger number of inexpensive error indicators, resulting in
less costly, more accurate error models

Freno et al. Machine-Learning Error Models for Approximate Solutions 19 / 50
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Error Model

• Assume there exist Nx error indicators or features x(µ) ∈ RNx

– available from solution approximation

– cheaply computable

– informative of the error δ(µ) ∈ R

• We model the nondeterministic mapping x(µ) 7→ δ(µ)

δ(µ) = f(x(µ)) + ε(x(µ))

• f : deterministic regression function

• ε: stochastic noise

– Mean-zero random variable

– Accounts for irreducible error due to omitted explanatory variables

– Epistemic – additional features can enable zero noise

Freno et al. Machine-Learning Error Models for Approximate Solutions 20 / 50
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Regression Model

• Regression function defines conditional expectation of error given the
features:

E[δ(µ) |x(µ)] = f(x(µ))

• We construct models of

– deterministic regression function f̂(≈ f)

– stochastic noise ε̂(≈ ε),
which yield a statistical model for the approximate-solution error

δ̂(µ)︸︷︷︸
stochastic

= f̂(x(µ))︸ ︷︷ ︸
deterministic

+ ε̂(x(µ))︸ ︷︷ ︸
stochastic

Freno et al. Machine-Learning Error Models for Approximate Solutions 21 / 50
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Regression Model Objectives

• Low Cost: Should employ cheaply computable features x

• Low Noise Variance: Should exhibit low noise variance, reduce
epistemic uncertainty introduced by approximate solution

• Generalize: Empirical distributions of δ̂ and δ should be close on test
set not used to train model – should not overfit on training data

Freno et al. Machine-Learning Error Models for Approximate Solutions 22 / 50
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Regression Model Construction Steps

1) Feature engineering

– Cheaply computable features x from approximate model

– Informative of the error – construct low-noise-variance model

– Low dimensional (small Nx) such that less training data are needed

2) Regression-function approximation

– Construct f̂ using regression methods from machine learning

– Approximate mapping from features x to error δ using a training set

3) Noise approximation

– Mean-zero, constant-variance Gaussian random variable: ε̂ ∼ N (0, σ̂2)

– σ̂2 is sample variance of regression-model noise on a test set
(mean squared error on test set)

Freno et al. Machine-Learning Error Models for Approximate Solutions 23 / 50
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Feature Engineering: Parameters

x(µ) = µ

• The mapping µ 7→ δ(µ) is deterministic, but often complex

– Can be oscillatory for ROMs since δ(µ) ≈ 0 when µ ∈ DROM
Train

• Could yield zero noise variance if

– Large amount of training data

– High-capacity regression model

• Typically low-quality features

• Inspired by ‘multifidelity correction’ methods for optimization

Alexandrov et al., 2001; Gano et al., 2005; Eldred et al., 2004

Freno et al. Machine-Learning Error Models for Approximate Solutions 25 / 50
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Feature Engineering: Dual-Weighted Residual

x(µ) = d(µ) := y(µ)T r(µ)

• First-order approximation of QoI error δs(µ)

• Small number (Nx = 1) of high-quality features

• High computational cost and significant implementation effort

• ROMES method uses approximation for dual-weighted residual

M. Drohmann and K. Carlberg, 2015

Freno et al. Machine-Learning Error Models for Approximate Solutions 26 / 50
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Feature Engineering: Parameters and Residual (Approximations)

x(µ) = [µ; r(µ)]

• DWR is weighted sum of residual vector elements d(µ) := y(µ)T r(µ)

• Avoids implementation and costs associated with dual vector y(µ)

• Large number (Nx = Nµ +Nu) of low-quality features

• Approaches to reduce number of features and improve quality

– Use mr � Nu principal component coefficients: r̂(µ)

– Sample nr � Nu elements of residual: Pr(µ), where P ∈ {0, 1}nr×Nu

– Use mr � Nu gappy principal component coefficients: r̂g(µ)

Freno et al. Machine-Learning Error Models for Approximate Solutions 27 / 50
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Feature Engineering: Residual Norm with/without Parameters

x(µ) = ‖r(µ)‖2 or x(µ) = [µ; ‖r(µ)‖2]

• DWR can be bounded using the Cauchy–Schwarz inequality:

|d(µ)| ≤ ‖y(µ)‖2‖r(µ)‖2
• Normed state-space error δu(µ) can be bounded:

M. Drohmann and K. Carlberg, 2015

‖r(µ)‖
β(µ) ≤ δu(µ) ≤ ‖r(µ)‖

α(µ)

• µ can be omitted (x(µ) = ‖r(µ)‖2) if

– µ is not indicative of error

– Nµ is too large relative to training data

• Requires computing entire residual vector r(µ)

• Small number of potentially low-quality features
Freno et al. Machine-Learning Error Models for Approximate Solutions 28 / 50
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Regression-Function Approximation

We consider several different regression models

• Ordinary least squares (OLS)

– Linear (OLS: Linear)

– Quadratic expansion of features (OLS: Quadratic)

• Support vector regression (SVR)

– Linear kernel (SVR: Linear)

– Gaussian (radial basis function) kernel (SVR: RBF)

• Random forest (RF)

• k-nearest neighbors (k-NN)

• Artificial neural network (ANN)

Freno et al. Machine-Learning Error Models for Approximate Solutions 29 / 50
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Training and Test Data

Training Data

• Set of parameter training instances Dtrain ⊂ D
• Train regression models from high-fidelity and approx. solutions

– Cross-validated to tune regression-model hyper-parameters

• Used to compute principal components of residuals

Test Data

• Set of parameter test instances Dtest ⊂ D not used for training
(Dtrain ∩ Dtest = ∅)

• Used to assess regression models and quantify stochastic noise

Freno et al. Machine-Learning Error Models for Approximate Solutions 30 / 50
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Cube: Reduced-Order Modeling

xy

z

x

y

z

• Applied traction (Neumann boundary condition)

• Planar constraint (Dirichlet boundary condition)

• Complete constraint (Dirichlet boundary condition)

• Node of interest
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Cube: Overview

• Nu = 3410 – deliberately small to compute d(µ) and use r(µ)

• Nµ = 3 parameters: µ = [E; ν; t]

– E ∈ [75, 125] GPa, ν ∈ [0.20, 0.35], t ∈ [40, 60] GPa

• 8 HF runs → up to mu = 8 ROM basis vectors (2 used – 99.49%)
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Cube: Variance Unexplained for QoI Error Prediction
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Features Features

• ‖r‖2 yields highest variance unexplained

• dux and duy yield moderate variance unexplained, but are costly

• SVR: RBF and ANN yield lowest variance unexplained

• [µ; r̂g] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 3410)

Freno et al. Machine-Learning Error Models for Approximate Solutions 34 / 50



Introduction Parameterized Nonlinear Equations Error Models Experiments Summary

Cube: Variance Unexplained for QoI Error Prediction
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Features Features

• ‖r‖2 yields highest variance unexplained

• dux and duy yield moderate variance unexplained, but are costly

• SVR: RBF and ANN yield lowest variance unexplained

• [µ; r̂g] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 3410)
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Cube: Variance Unexplained for QoI Error Prediction
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Features Features

• ‖r‖2 yields highest variance unexplained

• dux and duy yield moderate variance unexplained, but are costly

• SVR: RBF and ANN yield lowest variance unexplained

• [µ; r̂g] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 3410)
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Cube: Variance Unexplained for QoI Error Prediction
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Features Features

• ‖r‖2 yields highest variance unexplained

• dux and duy yield moderate variance unexplained, but are costly

• SVR: RBF and ANN yield lowest variance unexplained

• [µ; r̂g] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 3410)
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Cube: Variance Unexplained for QoI Error Prediction
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Features Features

• ‖r‖2 yields highest variance unexplained

• dux and duy yield moderate variance unexplained, but are costly

• SVR: RBF and ANN yield lowest variance unexplained

• [µ; r̂g] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 3410)
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Cube: QoI Error Predictions

• Our method beats previous
state-of-the-art methods with
r2 > 0.9999 in both cases
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Cube: Normed State-Space Error Predictions
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• Our method beats previous state-of-the-art methods with r2 > 0.996
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Predictive Capability Assessment Project: Reduced-Order Modeling

x

y

z

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

Deformation

Magnitude [m]

• Applied pressure (Neumann boundary condition)

• Planar constraint (Dirichlet boundary condition)

• Complete constraint (Dirichlet boundary condition)

• Nodes of interest
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PCAP: Overview

• Nu = 274, 954 for quarter of domain

• Nµ = 3 parameters: µ = [E; ν; p]

– E ∈ [50, 100] GPa, ν ∈ [0.20, 0.35], p ∈ [6, 10] GPa

• 8 HF runs → up to mu = 8 ROM basis vectors (5 used – 99.90%)

• 30 parameter training instances for regression model

Freno et al. Machine-Learning Error Models for Approximate Solutions 38 / 50



Introduction Parameterized Nonlinear Equations Error Models Experiments Summary

PCAP: Basis Vectors
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PCAP: Variance Unexplained for QoI Error Prediction
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Features Features

• ‖r‖2, [µ; ‖r‖2], and µ yield highest variance unexplained

• RF and k-NN yield highest variance unexplained

• SVR: RBF and ANN yield lowest variance unexplained

• [µ; r̂g] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 274, 954)
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PCAP: Variance Unexplained for QoI Error Prediction
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Features Features

• ‖r‖2, [µ; ‖r‖2], and µ yield highest variance unexplained

• RF and k-NN yield highest variance unexplained

• SVR: RBF and ANN yield lowest variance unexplained

• [µ; r̂g] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 274, 954)
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PCAP: Variance Unexplained for QoI Error Prediction
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Features Features

• ‖r‖2, [µ; ‖r‖2], and µ yield highest variance unexplained

• RF and k-NN yield highest variance unexplained

• SVR: RBF and ANN yield lowest variance unexplained

• [µ; r̂g] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 274, 954)
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PCAP: Variance Unexplained for QoI Error Prediction
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PCAP: Variance Unexplained for QoI Error Prediction
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PCAP: QoI Error Predictions

• Our method beats previous
state-of-the-art methods with
r2 > 0.9994 in both cases
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PCAP: Normed State-Space Error Predictions
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• Our method beats previous state-of-the-art methods with r2 > 0.998
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Burgers’ Equation: Inexact Solutions and Coarse Solution Prolongation
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• Nu = 1999

• Nµ = 3 parameters: µ = [α; ua; R]

– α ∈ [0.1, 2.0], ua ∈ [0.1, 2.0], R ∈ [50, 1000]

• Quantity of interest s is the slope m at x = 1
2

• K̃ = 1 and K̃ = 2 or NuLF = 499 and NuLF = 999
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Burgers’ Equation, Inexact Solutions: QoI Error Predictions
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• Our method beats previous state-of-the-art method with r2 > 0.9999
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Burgers’ Equation, Coarse Mesh Prolongation: QoI Error Predictions
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• Our method beats previous state-of-the-art methods with r2 > 0.9999
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Feature Choices

• Norm of the residual, ‖r‖2
– Low-quality single feature

– Expensive to compute and performs poorly

• Dual-weighted residual, d

– High-quality single feature

– Performs well for small amounts of training data

– Very expensive to compute

• Parameters µ

– Only perform well with SVR: RBF or ANN

– Do not perform well with OLS: Linear

• Parameters and gappy principal components of residual, [µ; r̂g]

– Perform the best with r2 > 0.996 for each experiment

– Only require about 13 features
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Feature Reduction

• Gappy PCA more effective than directly sampling the residual

• Little benefit to using nr ≥ 100 samples; more samples are more
expensive and do not perform much better

• Often, only nr = 10 samples are necessary to get accurate prediction
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Questions?

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

This presentation describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the presentation
do not necessarily represent the views of the U.S. Department of Energy
or the United States Government.
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