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Overview

• Gaussian quadrature rules are useful for numerical integration

• For integrands accurately approximated by polynomials, rules are
typically employed that exactly integrate polynomials
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Triangles

• Quadrature rules for triangles are important for evaluating surface
integrals

• Several authors have developed methods for computing symmetric
quadrature rules for polynomials

Lyness & Jespersen (1975), Dunavant (1985), Wandzura & Xiao (2003), Papanicolopulos (2015)

• Geometrically symmetric rules are desirable

– Mapping is straightforward

– Points are not more concentrated at a single vertex
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Singularities

• Polynomial rules do not converge monotonically or rapidly for integrable
functions with boundary singularities

• Such functions include unbounded derivatives at the boundary, where the
function may not be defined

• For 1D, an approach has been developed to compute quadrature rules for
singular functions

Ma et al. (1996)

• For 2D, previous authors have taken the outer product of one-dimensional
rules to generate asymmetric triangle rules

Vipiana et al. (2013)
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Challenges to Generate

• Regardless of dimension and function sequence, equations for computing
quadrature rules are stiff and highly dependent upon initial guess

• In multiple dimensions, for a given number of points, the number of
functions that can be integrated is unknown
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Quadrature Rules

• An n-point quadrature rule exactly integrates a sequence of nf functions
f(x) = {f1(x), . . . , fnf

(x)}, such that∫
A

f(x)dA =

n∑
i=1

wif(xi)

• In 1D, nf = 2n and, for polynomials, f(x) = {1, . . . , x2n−1}

• In 2D, nf
?
= 3n,

– This is unproven

– If rules are symmetric, the efficiency can be significantly lower
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Symmetric Rules for Triangles

• Invariant to rotation and reflection about the medians for equilateral
triangles

• Triangles can be isoparametrically transformed to other triangles

• Rules are constructed from a combination of orbits, such that
n = n0 + 3n1 + 6n2

type-0 orbit type-1 orbit type-2 orbit
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Polynomial Integration

• Rules that integrate polynomials of degree d exactly integrate linear
combinations of xpyq

– 0 ≤ p, q ≤ d
– 0 ≤ p+ q ≤ d
– nf = (d+ 1)(d+ 2)/2 monomials

• This can yield more equations than unknowns

– A 3-point rule can integrate polynomials of d = 2 → nf = 6 monomials:
f(x, y) = {1, x, y, x2, y2, xy}

– Number of unknowns is 2: α (position along median) and w (weight)

– Mismatch is reconcilable; 6 quadrature equations are not linearly independent
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Polynomial Integration (continued)

• For polynomials, an invariant sequence can be constructed to reduce
number of equations

• Alternatively, we can formulate problem as unconstrained optimization
problem in barycentric coordinates:

arg min
α,β,w

F (α,β,w),

where

F (α,β,w) =

nf∑
j=1

(
Ĩfj − Ifj
Ifj

)2

,

Ĩfj =
n∑
i=1

w′ifj(αi, βi), Ifj =

∫ 1

0

∫ 1−β

0
fj(α, β)dαdβ,

with the expectation that F (α,β,w) = 0
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Overview

• Integrands with boundary singularities can have singularities located on
edges and/or corners

– Derivatives of integrand are unbounded

– Integrand can be defined or undefined, provided the integrand is integrable
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One-Dimensional Characterization

• Series expansion about singularity location

• Expansion alternates between monomials and singularities

• For the electric-field integral equation,

f(x) = {1, x, x lnx, x2, x3, x3 lnx, x4, x5, x5 lnx, . . .}
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Two-Dimensional Characterization

• Expansions alternate between monomials and singularities

• If 2D characterizations of singularities are known, can use in sequence

• For the electric-field integral equation,

1

x

x ln
(
y − 1 +

√
x2 + (y − 1)2

)
x ln
(
y +

√
x2 + y2

)
x2, xy

x3, x2y

x3 ln
(
y − 1 +

√
x2 + (y − 1)2

)
x3 ln

(
y +

√
x2 + y2

)
x4, x3y, x2y2

x5, x4y, x3y2

x5 ln
(
y − 1 +

√
x2 + (y − 1)2

)
x5 ln

(
y +

√
x2 + y2

)
x6, x5y, x4y2, x3y3

x7, x6y, x5y2, x4y3

x7 ln
(
y − 1 +

√
x2 + (y − 1)2

)
x7 ln

(
y +

√
x2 + y2

)
x8, x7y, x6y2, x5y3, x4y4

x9, x8y, x7y2, x6y3, x5y4

Freno et al. Symmetric Triangle Quadrature Rules for Arbitrary Functions 16 / 42



Introduction Preliminaries Singularities Approach 1 Approach 2 Numerical Example Summary

Outline

• Introduction to Quadrature Rules

• Quadrature Preliminaries

• Singularities

• Approach 1: Optimization for Moderate Number of Functions
– Overview
– Function Sequence

• Approach 2: Quadrilateral Subdomains

• Numerical Example: The Electric-Field Integral Equation

• Summary

Freno et al. Symmetric Triangle Quadrature Rules for Arbitrary Functions 17 / 42



Introduction Preliminaries Singularities Approach 1 Approach 2 Numerical Example Summary

Overview

• Goal is to efficiently integrate polynomials and singularities

• Compute points & weights through optimization – nonlinear least squares

• This approach uses polynomial rules as a baseline

– Initial guesses near the polynomial rule

– Same orbit counts for each n

• Replace higher polynomial degrees with singular functions

• Attempt to increase number of functions integrated
(1, 0, 0)

(0, 0, 1)(0, 1, 0)

w1

α
3

w3
α
2

w2
α
4

β4

w4
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Function Sequence

• Weigh number of singular functions against maximum polynomial degree

• Ability to integrate polynomials includes ability to integrate cross terms
(e.g., x3 includes x2y)

• Ability to integrate singular functions does not extend to cross terms

• Three approaches to address this issue:

• Use 2D characterization of singularity, if available

• Use 1D characterization of singularity, assume cross terms are not essential

• Include cross terms for 1D characterization and reduce polynomial degree

• Alternatively, one can use Approach 2
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Overview

• In multiple dimensions, number of integrable functions not straightforward

• Computation is expensive and multiple solutions exist

• For lengthy function sequences, we employ n′-point 1D rules that
integrate 1D function sequences, such that n = 3n′2

A B

C

D

EF

A D

O

F

(0, 0)

(1, 1)

0 1
ξ

η

ξ

n′ points

n′2 points n′2 points 3n′2 points
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Overview

Scalar Potential

Is,c =

∫
AT

∫
AS

cos(2πR)

R
dASdAT

Is,s =

∫
AT

∫
AS

sin(2πR)

R
dASdAT

Vector Potential

Iv,c =

∫
AT

(xT − xj) ·
∫
AS

cos(2πR)

R
(xS − xi)dASdAT

Iv,s =

∫
AT

(xT − xj) ·
∫
AS

sin(2πR)

R
(xS − xi)dASdAT

AS has vertices (0 m, 0 m), (1/20 m, 1/20 m), and (−1/20 m, 1/20 m)

AT has same shape

x

y

z

AS

xi

xS ∆y

∆z

y ′

θ

AT

xj

xT

R
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Approach 1 Function Sequences

1D Singularities 2D Singularities

1 1

x x

x lnx x ln
(
y − 1 +

√
x2 + (y − 1)2

)
x2, xy x ln

(
y +

√
x2 + y2

)
x3, x2y x2, xy

x3 lnx x3, x2y

x4, x3y, x2y2 x3 ln
(
y − 1 +

√
x2 + (y − 1)2

)
x5, x4y, x3y2 x3 ln

(
y +

√
x2 + y2

)
x5 lnx x4, x3y, x2y2

x6, x5y, x4y2, x3y3 x5, x4y, x3y2

x7, x6y, x5y2, x4y3 x5 ln
(
y − 1 +

√
x2 + (y − 1)2

)
x7 lnx x5 ln

(
y +

√
x2 + y2

)
x8, x7y, x6y2, x5y3, x4y4 x6, x5y, x4y2, x3y3

x9, x8y, x7y2, x6y3, x5y4 x7, x6y, x5y2, x4y3

x9 lnx x7 ln
(
y − 1 +

√
x2 + (y − 1)2

)
x10, x9y, x8y2, x7y3, x6y4, x5y5 x7 ln

(
y +

√
x2 + y2

)
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Approach 1, 1D Singularities

n = 3 n = 4 n = 6

n = 7 n = 12 n = 16
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Approach 1, 1D Singularities (continued)

n = 25 n = 27 n = 33

n = 37 n = 42
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Approach 1, 2D Singularities

n = 3 n = 4 n = 6

n = 7 n = 12 n = 16
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Approach 1, 2D Singularities (continued)

n = 19 n = 25 n = 27

n = 33 n = 42 n = 52
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Approach 2 Function Sequence

f(x) = {1, x, x lnx, x2, x3, x3 lnx, x4, x5, x5 lnx, . . .}
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Approach 2

n = 3 n = 12 n = 27

n = 48 n = 75 n = 108
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Case 1: Scalar potential, singular interaction, θ = 0◦, ∆y = 0, and ∆z = 0
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Case 2: Scalar potential, singular interaction, θ = 45◦, ∆y = 0, and ∆z = 0
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Case 3: Scalar potential, singular interaction, θ = 90◦, ∆y = 0, and ∆z = 0
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Case 4: Scalar potential, singular interaction, θ = 180◦, ∆y = 0, and ∆z = 0
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Case 5: Scalar potential, near-singular interaction, θ = 180◦, ∆y = 0, and ∆z = δz
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Case 6: Scalar potential, far interaction, θ = 0◦, ∆y = δy, and ∆z = 0
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Case 7: Vector potential, singular interaction, θ = 90◦, ∆y = 0, and ∆z = 0
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Case 8: Vector potential, singular interaction, θ = 180◦, ∆y = 0, and ∆z = 0
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Summary

• Introduced 2 symmetric quadrature approaches for arbitrary functions

• Motivated by need to integrate singular integrands

• Approach 1

– Generally most efficient for singular integrands – outperformed polynomial rules
by orders of magnitude

– Similar efficiency to polynomial rules for nonsingular integrands

• Approach 2

– More efficient than polynomial rules for singular integrands

– Error decreases monotonically relative to number of integration points

– Points are cheap to compute (from 1D rules)
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Questions?

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

This presentation describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the presentation
do not necessarily represent the views of the U.S. Department of Energy
or the United States Government.
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