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Introduction
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Collisional Plasma Dynamics

e Important for many scientific and engineering applications
— Hypersonic & reentry air plasmas affecting heat loads and radiation
— Plasma devices such as lightning arrester connectors and plasma switches
— Pulsed power for simulating Sandia flagship experimental facilities

— Semiconductor & thin-film plasmas for etching and deposition

¢ Modeled via particle-in-cell (PIC) with collision algorithm (MCC/DSMC)
— Solve Maxwell’s equations to compute electromagnetic fields on grid
Solve particle equations of motion due to Lorentz force and collisions
— Interpolate EM fields to particles, distribute particle properties to grid
Model particle collisions with direct simulation Monte Carlo (DSMC)
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Introduction
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Code Verification

e Code verification assesses correctness of numerical-method implementation
e Most rigorously measures rate at which error decreases with refinement

e Error requires exact solution — usually unavailable

Manufactured solutions are popular alternative: r(u) = 0 — r(u) = r(uM)
Manufacture an arbitrary solution u™
— Insert manufactured solution into equations to get residual term r(u?)
Add residual term to equations to make manufactured solution a solution

e For collisionless plasma dynamics, few instances of code verification exist
e Significant code-verification challenges with collisional plasma dynamics:
— Discretization errors from space and time discretization
Statistical sampling error from finite number of computational particles

— Stochasticity from collision modeling — considering random subset of collisions
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Introduction
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Existing Work: Collisionless Plasma Dynamics

e Riva et al., Physics of Plasmas (2017), 10.1063/1.4977917
— Modify particle weights to achieve manufactured distribution function
* Particles move independently of manufactured distribution function
* Particle weights modified according to Vlasov equation
— 1D, electrons
— Measure electric field error
— Multiple approaches with varying expense to measure dist. function error

— Many runs per discretization

e Tranquilli et al., Journal of Computational Physics (2022), 10.1016/3.jcp.2021.110751
— Extend the approach of Riva et al. to 2D, electrons and ions
Measure charge density, electric field, and electric potential errors
— Derive expected convergence rates for statistical sampling errors in fields
Argue against the need to measure error in distribution function

— Single run per discretization
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Introduction
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This Work: Collisional Plasma Dynamics

e Apply method of manufactured solutions to equations of motion
— Avoid potentially negative weights — weights are unmodified
Obtain manufactured particle positions and velocities at each time step
¢ Inversely query cumulative manufactured distribution function
¢ Balance collision algorithm velocity change with manufactured source term
— Average outcomes from multiple collision-algorithm runs at each time step
Compute analytical expected change in velocity due to collisions
¢ Manufacture cross section and anisotropy
¢ Apply method of manufactured solutions to Poisson equation
— Manufacture electric scalar potential
e Compute field errors and particle errors
— Single run per discretization

¢ Demonstrate approach for collisional and collisionless plasma dynamics
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Equations
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Particle-in-Cell Method Overview

¢ Place (weighted) computational particles randomly in phase space
(according to distribution function)

e Interpolate particle charge onto spatial mesh
¢ Solve Maxwell’s equations on spatial mesh for electromagnetic fields
e Interpolate electric field onto particles

e For each particle, integrate equations of motion due to
— Lorentz force from electromagnetic fields

Collisions between particles
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Equations
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Equations of Motion for Charged Particles (single species, electrostatic)

Equations of motion for each particle p:

B0 =0, ) =vplt), V(1) =

* wp, Xp, and v, are computational particle weight, position, and velocity

F,(t) = ¢E,(t) is electrostatic Lorentz force, Ey(t) = E(x,(t),t)
* E is electric field

e m and ¢ are species mass and charge

(Avy,/At)con is instantaneous change in v, per At due to collision algorithm

Increasing N, distribution function evolution approaches Boltzmann equation:
af F of )
o yovp i B ()
ot m Ov Ot /) con

* f(xp, Vp,t) is particle distribution function, (9f/0t)_,
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Equations
L]

Maxwell’s Equations (electrostatic case — negligible magnetic field)

Gauss’s law v.E=" —  |A¢ = e
€0 €0
Gauss’s law for magnetism V-B=0 T
Faraday’s law of induction VxE= —01?‘0 - E=-Vo¢
OE
Ampere’s circuital law VxB= /1,(,<J + (()7>
(

9]
e Charge conservation 07;) +V.J=0
’ o0
e Charge density p(x,t) = q/ f(x,v,t)dv
—00
00
¢ Electric current density J(x,t) = q/ f(x,v,t)vdv
—0o0

e ¢y and po are permittivity and permeability of free space
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e Manufactured Solutions for Collisional Plasma Dynamics
Manufactured Particle Distribution Function
— Manufactured Solutions through the Equations of Motion
— Manufactured Source Term for Binary Elastic Collisions
— Manufactured Solutions for the Poisson Equation
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Manufactured Solutions
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Manufactured Particle Distribution Function

Assume fM takes the form of 3D analog of previous work:

fjw(xavvt) = fk(xat)fb(V:t)7

where
3 2 V2 2/ (12 0

fV(V7 t) - H fl’z (1)1‘, t) fv,' (7}1'7 t) - ﬁ ﬁ(;)‘% e /8i(®) ) fv,:(vi: t)dvz - 17
=1 ? —00

and

3 Ly,
Floet) = N [ o) | tatedni =1, [ Rdxax =N
3

e N is the number of physical particles in the volume V = H Ly,
. . i=1
e Separability of fx(x,t) imposed for convenience '

e fu(v,t) is deliberately non-Maxwellian, 9;(¢) incorporates time variation
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Manufactured Solutions
L]

Manufactured Solutions through the Equations of Motion

Apply method of manufactured solutions to equations of motion:

M
. M . Av, M Av,
%, = v, +xM —yM V}:EE)—F P +VM_2EM_ p
F F p b Pt m P At
Y coll g g coll

¢ Avoids negative weights
e At t =0, for component i, take uniform random samples aiys Eviy € [0, 1]

e Inversely query cumulative dist. functions to obtain xtt)] (t) and v,y (t):

Fr (@l (t),t) =&, ,  Fu()@),t) =6,

p
¢ Differentiate to obtain ll\p] (t) and vty (t)
e In general, X]]]” #* Vg'[

(Avﬂj JAt)

coll is manufactured collision term

@ Sandia National Laboratories



Manufactured Solutions
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Manufactured Source Term for Binary Elastic Collisions

Velocity equation

. q M
Vp = E(EP_E[) )+

(Avp)coll B (AV;}])COH + oM
At P

Requires velocity changes due to collisions at each time step:

* (Avy) ., due to stochastic collision algorithm

o (Avg!)con due to corresponding deterministic manufactured source term
At each time step, make collision algorithm outcome less stochastic:

* Run collision algorithm Ny, independent times, average velocity change

a

Nave
1 avg
* Replace (Avy) ; with (Avp) 1= Z (Avllf)
CO. CO. Nan kzl
e Derive expected velocity change for each particle: (AV;}I)COH = <Av£’I>COH
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Manufactured Solutions
[o] le]e}

cted Change in Velocity (binary elastic collisions)

Post-collision velocities are obtained from momentum and energy conservation:
1 1 cos € sin x
! . ! . . L3 Sy
Vp—i(vq—i—vp—gn), Vq_E(vq+vP+gn)’ n =< sinesiny
cos Y

)
where g = |v, — v| = v}, — v | is relative speed

1
The velocity change for particle p is Av,, = V; —Vp = i(vq — v, —gn)
Compute expected velocity change across possible collision partners:

1 o o reell M
s L P = 1) v = v = am) £ v D ) dxdedvyd
< P /coll — 0o p2m T N
/ / / / M (x,vq, )p(x, €)dxdedv,dx
JV J-c0JO JO

Peon(g) = % is collision likelihood, p(x, €) is probability density function, o(g) is cross section

<Avﬂ1>mu is deterministic, should be computed analytically — complicated by g

— Manufacture anisotropy and cross section
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Manufactured Solutions
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Manufactured Anisotropy (to avoid dependency on g due to np)

Model probability density function as separable: p(x,€) = py(x)pe(€), where

27 pw 2 ™
/ / p(x, €)dxde =1, / pe(€)de =1, / py(X)dx =1
0 0 0 0

1
Azimuthally symmetric scattering: pc(e) = 7
T
In expression for <Av2"[>con,
2w g 2w T
g/ / np(x, €)dxde = 7/ / npx(x)dxdfzg{o, 0,/ Px(x) cosxdx}
o Jo m™Jo Jo 0
| S —
=0

*Tr
Avoid dependency on g from anisotropy: / Dy (x) cos xdxy =0
Jo
sin y
2
For Fp‘xl, use ansatz p,(x) = (Co + Oy cos x + Oy cos® x + C3 cos® y) sin x

Avoid isotropy: py(x) #

T
C5 and C'5 satisfy constraint, Cy and C| minimize / (Py(x) fﬁx(x))2dx
0
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Manufactured Solutions
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Manufactured Cross Section (to evaluate (AvM) . analytically)

With / Py (X) cos xdx =0,
0

wAt(NS — 1) oo
<AV£[>CO11 = W /700 a(9)9(vg = vp) fv(vg, t)dvy
N,—1
IfO' ZO_ g2n l’
n=0
11 N,—1
Ny ~ wA(NgT —1) 7
<Avp >Coll =—Av T; onfn(vp, 1),
oo
where £, (vp,t) = / gzn’(vq — vp) fv(vg, t)dvy can be computed analytically
J—00

Numerical and manufactured source terms balanced with manufactured p, and o
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Manufactured Solutions
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Manufactured Solutions for the Poisson Equation

Manufacture the electric scalar potential ¢ (x,t) and solve

M
Ap=—L A+

€0 €0

where A¢p™ is evaluated analytically
Evaluate manufactured charge density analytically as well:

pM(x,t) =q /.OO PRV, t)dv = qfx(x,1)

—00
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Error Analysis
L ]

Discretization Parameters

¢ Discretize spatial domain with uniform cells of length Az;
e Numerically integrate with time step size At
e Represent physical particles with NN, computational particles

e Average the collision algorithm N,y times

Refine these quantities together:
Ax; ~ At ~ h,
N, ~h79, Nayg ~ 7", Neent ~ b3, Nt~ = (a39)
Measure discrete L', L2, and L® norms, refine so error in L* is at most O(h?)
 Collisional: ¢=7 — N, ~ hT, 7 =25, Nayg ~ h~?

e Collisionless: ¢ =5 — N, ~ h™>

@ Sandia National Laboratories



Error Analysis
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Error Sources

Field Quantities
e Trilinear basis functions: O(h?) for ¢, O(h?) recovery for E
e Sampling error: (’)(NI? ) for ¢, O(N, l/)]z ) for E
o Particle-position error: O(hPx) for ¢ and E

Particles (second-order-accurate velocity Verlet time integration)

vitt2 =y g %( +{Avy)t = (AvIh o+ A" ) +7,
;+1 =x" + At (V,, + X,}I -~ I}1>n+1/2 -y
VIl = yntl/2 %( + (Avyy R AV Al(v;}’)”“) T2
¢ Per-step collision error: eg)“, <Avl’>(oll (Av; ”>ZLOH

L]
i i ; : n+1/2 3\ , 2\
¢ Time-integration truncation errors: 7y + Tv, ~ O(At?), 73 ~ O(At”)
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Numerical Examples
@00

Manufactured Cross Section and Anisotrop;

—42 0.7
—e— Tabulated — Isotropic (= 1)
43 — Fit 0.6 —— Anisotropic (a =2) |
0.5 — Anisotropic fit
s 4 04
L =
5 2
£ s 0.3
0.2
—46
0.1
a7 . . . . . . . 0.0
—-1.0 —-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.2 0.4 0.6 0.8 1.0
In(g/v) X/m
Ns—1
s 2n—1 ‘
¢ Cross section o(g) = E ong , N, =3
n=0

Log-scale least squares fitting of data from Itikawa J. Phys. Chem. Ref. (2009)
— Goal is reasonable cross section, not exact fit
¢ Anisotropy Fp_x]’ Py(X) = (Co + Cycosx + Co cos? x + C3 cos® x) sin y
— Py(x) = acos(x/2)** Lsin(y/2), 1<a<2, (variable soft sphere)

— Isotropic (o = 1), anisotropic (v > 1)
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Numerical Examples
(o] I}

Manufactured Solutions and Discretizations

Particle distribution function: fM(x,v,t) = fx(x,t) fv(v,1),

3 3
fx(x,t) =N H S (i, t), fo(v,t) = H fo, (v, 1),
i=1 =1

Potential: G‘YM(XJ‘,) = et/ 1) sin(??r{i - ﬂ) sin (ZW[LI—/U — é]) sin(?m’{i — ﬂ)

o =105 m/s, Ly, =3/2m, T = L, /(100), N = 10%° particles
q=e, m =3 x 10%m., 6=10"V, periodic BCs
Collisional Collisionless
Disc. T/At 1 cell; ]\"r(:ell *Nravg ]\"Tp AV])/]\"T(:HII ]\T[) ]\"rp/j\'r(:ell
1 8 8 512 32 10,240 20.00 10,240 20.00

12 12 1,728 243 174,960 101.25 77,760 45.00
16 16 4,096 1,024 1,310,720 320.00 327,680 80.00
20 20 8,000 3,125 6,250,000 781.25 1,000,000  125.00
24 24 13,824 7,776 22,394,880 1620.00 2,488,320  180.00
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Particle Distribution
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Numerical Examples
[ leJele]

Particle Distribution Function fy(x,v,t) = fx(x,t)fy(v,t), t =T

— Analytical
[ Numerical

— Analytical

0.60 0.75 0.75
055 0.70 —— Analytical 0.70
0.50 0.65 [ Numerical 0.65 | =1 Numerical
o 0.60 0.60
0.45 0.55 0.55
0.40 0.50 0.50
0.35 = 045 =045
) 0.40 =040
030 = 0.35 E 035
> 0.25 > 0.30 “= 030
0.20 0.25 0.25
0.15 “‘f(r' “»f‘r'
0.15 0.15
“’“_' 0.10 0.10
0.05 0.05 0.05
0.00 0.00 0.00
-4 -3-2-1 0 1 2 3 4 -4 -3-2-1 0 1 2 3 4 -4 -3 -2-1 0 1 2 3 4
u/v v/v w/v
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Numerical Examples
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Error Convergence at t = T": Collisional, Uncoupled

|
s
@
=)

{¢, u, v, w, 2, y, 2}

a), a={¢,u, v, w, x,y, 2}

log,o(%, /@), o

logyo(

“0.9 1.0 11 1.2 1.3 14
logyo Neen, log;o Nee,

e Particles and fields uncoupled (single run)
— Field does not affect particles (¢/m = 0)
— Particles do not affect field (¢ = 0)
e Particle error due to collisions, time integration
— Velocity and position: O(h?) in L', L2 L>
¢ Field error due to basis functions
— Potential: O(h?) in L, L?, L>
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Numerical Examples
[e]e] o]

Error Convergence at ¢t = 1" Collisional, One-Way Coupled

|
=)
@
=)

={¢, u, v, w, z, y, 2}
| | |
0 N - = = g
g L 2 g2 g

a), a={¢, u, v, w, z,y, 2}

= 3 ) o
= L o5t —om) ——u v ——
K E — o) ——ax Ay
-3.0
0.9 1.0 1.1 12 1.3 14
logyg Neen, logyg Nee,

e Particles and fields one-way coupled (2 separate runs)
— Field affects particles but is not affected by particles (¢/m # 0, ¢ = 0)
— Particles affect field but are not affected by field (¢ # 0, ¢/m = 0)

e Particle error due to collisions, time integration, field basis function error
— Velocity and position: O(h?) in L', L2 L>

¢ Field error due to basis functions, finite sampling, collisions, integration
— Potential: O(h?) in L, L?, L>
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Numerical Examples
[e]e]e] ]

Error Convergence at ¢t = 1" Collisional, Fully Coupled

|
s
@
=)

{¢, u, v, w, 2, y, 2}

V), a = {¢, u, v, w, z, y, 2}

< <
5 5
£
“0.9 1.0 11 1.2 1.3 14
logyg Neen, log Nee,

e Particles and fields fully coupled (single run)
— Field affects particles (¢/m # 0)
— Particles affect field (¢ # 0)
e Particle error due to collisions, time integration,
— Velocity and position: O(h?) in L', L2 L>
¢ Field error due to basis functions, finite sampling, all particle errors
— Potential: O(h?) in L, L?, L>
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Numerical Examples
[ le]

Error Convergence at ¢t = T": Collisionless, One-Way Coupled

|
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@
=)

|
l/
|

O, u, v, w, T, Y, 2}
| |

-~ o o
=) 1= 1= 13
/

//

V), a = {¢, u, v, w, z, y, 2}

-25 = 20
< — O(h?) 3 S T —om )
L B0 — O ——u v —— w L; o5k — OM*) ——u v ——
K — O(h?) ==z ——y ——z E — O(h?) =z ——y ——z
—3.5 - - - - - =30
0.9 1.0 1.1 1.2 1.3 14 0.9 1.0 1.1 1.2 1.3 14
logyg Neen, log;o Nee,

e Particles and fields one-way coupled (2 separate runs)
— Field affects particles but is not affected by particles (¢/m # 0, ¢ = 0)
— Particles affect field but are not affected by field (¢ # 0, ¢/m = 0)
e Particle error due to time integration, field basis function error
— Velocity and position: O(h?) in L', L2 L>
¢ Field error due to basis functions, finite sampling, particle time integration
— Potential: O(h?) in L, L?, L>
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Numerical Examples
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Error Convergence at ¢t = T": Collisionless, Fully Coupled

|
s
@
=)

{¢, u, v, w, 2, y, 2}

V), a = {¢, u, v, w, z, y, 2}

< <
5 5
£
“0.9 1.0 11 1.2 1.3 14
logyg Neen, log Nee,

e Particles and fields fully coupled (single run)
— Field affects particles (¢/m # 0)
— Particles affect field (¢ # 0)
e Particle error due to time integration,
— Velocity and position: O(h?) in L', L2 L>
¢ Field error due to basis functions, finite sampling, all particle errors
— Potential: O(h?) in L, L?, L>
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e Summary
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Summary
[ ]

Closing Remarks

¢ Presented code-verification approach for collisional plasma dynamics

¢ Added manufactured source terms to equations of motion (weights unmodified)

Manufactured distribution function, potential, cross section, and anisotropy
¢ Computed manufactured source terms analytically, averaged collisions
¢ Ran single simulation per discretization

e Achieved expected convergence rates for collisional and collisionless cases
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Questions? bafreno@sandia.gov brianfreno.github.io
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