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Collisional Plasma Dynamics

• Important for many scientific and engineering applications
– Hypersonic & reentry air plasmas affecting heat loads and radiation
– Plasma devices such as lightning arrester connectors and plasma switches
– Pulsed power for simulating Sandia flagship experimental facilities
– Semiconductor & thin-film plasmas for etching and deposition

• Modeled via particle-in-cell (PIC) with collision algorithm (MCC/DSMC)
– Solve Maxwell’s equations to compute electromagnetic fields on grid
– Solve particle equations of motion due to Lorentz force and collisions
– Interpolate EM fields to particles, distribute particle properties to grid
– Model particle collisions with direct simulation Monte Carlo (DSMC)
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Code Verification

• Code verification assesses correctness of numerical-method implementation

• Most rigorously measures rate at which error decreases with refinement

• Error requires exact solution – usually unavailable

• Manufactured solutions are popular alternative: r(u) = 0 ! r(u) = r(uM )
– Manufacture an arbitrary solution uM

– Insert manufactured solution into equations to get residual term r(uM )
– Add residual term to equations to make manufactured solution a solution

• For collisionless plasma dynamics, few instances of code verification exist

• Significant code-verification challenges with collisional plasma dynamics:
– Discretization errors from space and time discretization
– Statistical sampling error from finite number of computational particles
– Stochasticity from collision modeling – considering random subset of collisions
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Existing Work: Collisionless Plasma Dynamics
• Riva et al., Physics of Plasmas (2017), 10.1063/1.4977917

– Modify particle weights to achieve manufactured distribution function
· Particles move independently of manufactured distribution function

· Particle weights modified according to Vlasov equation

– 1D, electrons
– Measure electric field error
– Multiple approaches with varying expense to measure dist. function error
– Many runs per discretization

• Tranquilli et al., Journal of Computational Physics (2022), 10.1016/j.jcp.2021.110751

– Extend the approach of Riva et al. to 2D, electrons and ions
– Measure charge density, electric field, and electric potential errors
– Derive expected convergence rates for statistical sampling errors in fields
– Argue against the need to measure error in distribution function
– Single run per discretization
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This Work: Collisional Plasma Dynamics

• Apply method of manufactured solutions to equations of motion
– Avoid potentially negative weights – weights are unmodified
– Obtain manufactured particle positions and velocities at each time step
· Inversely query cumulative manufactured distribution function

• Balance collision algorithm velocity change with manufactured source term
– Average outcomes from multiple collision-algorithm runs at each time step
– Compute analytical expected change in velocity due to collisions
· Manufacture cross section and anisotropy

• Apply method of manufactured solutions to Poisson equation
– Manufacture electric scalar potential

• Compute field errors and particle errors
– Single run per discretization

• Demonstrate approach for collisional and collisionless plasma dynamics
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Particle-in-Cell Method Overview

• Place (weighted) computational particles randomly in phase space
(according to distribution function)

• Interpolate particle charge onto spatial mesh

• Solve Maxwell’s equations on spatial mesh for electromagnetic fields

• Interpolate electric field onto particles

• For each particle, integrate equations of motion due to
– Lorentz force from electromagnetic fields
– Collisions between particles
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Equations of Motion for Charged Particles (single species, electrostatic)

Equations of motion for each particle p:

ẇp(t) = 0, ẋp(t) = vp(t), v̇p(t) = Fp(t)
m

+
(∆vp(t)

∆t

)
coll

• wp, xp, and vp are computational particle weight, position, and velocity
• Fp(t) = qEp(t) is electrostatic Lorentz force, Ep(t) = E(xp(t), t)
• E is electric field
• m and q are species mass and charge
• (∆vp/∆t)coll is instantaneous change in vp per ∆t due to collision algorithm

Increasing Np, distribution function evolution approaches Boltzmann equation:

∂f

∂t
+ v · ∇f + F

m
· ∂f
∂v =

(
∂f

∂t

)
coll

• f(xp,vp, t) is particle distribution function,
(
∂f/∂t

)
coll is collision term
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Maxwell’s Equations (electrostatic case – negligible magnetic field)

Gauss’s law ∇ ·E = ρ

ε0
! ∆φ = − ρ

ε0

Gauss’s law for magnetism ∇ ·B = 0 "

Faraday’s law of induction ∇×E = −∂@@R0
B
∂t

! E = −∇φ

Ampère’s circuital law ∇×B = µ0

(
J + ε0

∂E
∂t

)

• Charge conservation ∂ρ

∂t
+∇ · J = 0

• Charge density ρ(x, t) = q

∫ ∞
−∞

f(x,v, t)dv

• Electric current density J(x, t) = q

∫ ∞
−∞

f(x,v, t)vdv

• ε0 and µ0 are permittivity and permeability of free space
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Manufactured Particle Distribution Function

Assume fM takes the form of 3D analog of previous work:

fM (x,v, t) = fx(x, t)fv(v, t),

where

fv(v, t) =
3∏
i=1

fvi(vi, t), fvi(vi, t) = 2√
π

v2
i

v̂i(t)3 e
−v2

i /v̂i(t)
2
,

∫ ∞
−∞

fvi(vi, t)dvi = 1,

and

fx(x, t) = N
3∏
i=1

fxi(xi, t),
∫ Lxi

0
fxi(xi, t)dxi = 1,

∫
V
fx(x, t)dx = N

• N is the number of physical particles in the volume V =
3∏
i=1

Lxi

• Separability of fx(x, t) imposed for convenience
• fv(v, t) is deliberately non-Maxwellian, v̂i(t) incorporates time variation
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Manufactured Solutions through the Equations of Motion

Apply method of manufactured solutions to equations of motion:

ẋp = vp + ẋMp − vMp , v̇p = q

m
Ep +

(∆vp
∆t

)
coll

+ v̇Mp −
q

m
EM
p −

(∆vMp
∆t

)
coll

• Avoids negative weights
• At t = 0, for component i, take uniform random samples ξxip , ξvip ∈ [0, 1]

• Inversely query cumulative dist. functions to obtain xMip (t) and vMip (t):

Fxi
(
xMip (t), t

)
= ξxip , Fvi

(
vMip (t), t

)
= ξvip

• Differentiate to obtain ẋMip (t) and v̇Mip (t)

• In general, ẋMp 6= vMp
•
(
∆vMp /∆t

)
coll is manufactured collision term
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Manufactured Source Term for Binary Elastic Collisions

Velocity equation

v̇p = q

m

(
Ep −EM

p

)
+
(
∆vp

)
coll −

(
∆vMp

)
coll

∆t + v̇Mp

Requires velocity changes due to collisions at each time step:

•
(
∆vp

)
coll due to stochastic collision algorithm

•
(
∆vMp

)
coll due to corresponding deterministic manufactured source term

At each time step, make collision algorithm outcome less stochastic:

• Run collision algorithm Navg independent times, average velocity change

• Replace
(
∆vp

)
coll with

〈
∆vp

〉
coll = 1

Navg

Navg∑
k=1

(
∆vkp

)
• Derive expected velocity change for each particle:

(
∆vMp

)
coll =

〈
∆vMp

〉
coll

Freno et al. Code Verification for Collisional Plasma Dynamics 15 / 35



Introduction Equations Manufactured Solutions Error Analysis Numerical Examples Summary

Expected Change in Velocity (binary elastic collisions)
Post-collision velocities are obtained from momentum and energy conservation:

v′p = 1
2(vq + vp − gn), v′q = 1

2(vq + vp + gn), n =


cos ε sinχ
sin ε sinχ

cosχ

 ,
where g = |vp − vq| = |v′p − v′q| is relative speed

The velocity change for particle p is ∆vp = v′p − vp = 1
2(vq − vp − gn)

Compute expected velocity change across possible collision partners:

〈
∆vMp

〉
coll =

1
2

∫
V

∫ ∞
−∞

∫ 2π

0

∫ π

0
Pcoll(g)

(
N cell
p − 1

)
(vq − vp − gn)fM (x,vq, t)p(χ, ε)dχdεdvqdx∫

V

∫ ∞
−∞

∫ 2π

0

∫ π

0
fM (x,vq, t)p(χ, ε)dχdεdvqdx

Pcoll(g) = σ(g)gw∆t
∆V is collision likelihood, p(χ, ε) is probability density function, σ(g) is cross section〈

∆vMp
〉
coll is deterministic, should be computed analytically – complicated by g

! Manufacture anisotropy and cross section
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Manufactured Anisotropy (to avoid dependency on g due to np)
Model probability density function as separable: p(χ, ε) = pχ(χ)pε(ε), where∫ 2π

0

∫ π

0
p(χ, ε)dχdε = 1,

∫ 2π

0
pε(ε)dε = 1,

∫ π

0
pχ(χ)dχ = 1

Azimuthally symmetric scattering: pε(ε) = 1
2π

In expression for
〈
∆vMp

〉
coll,

g

∫ 2π

0

∫ π

0
np(χ, ε)dχdε = g

2π

∫ 2π

0

∫ π

0
npχ(χ)dχdε = g

{
0, 0,

∫ π

0
pχ(χ) cosχdχ︸ ︷︷ ︸

=0

}

Avoid dependency on g from anisotropy:
∫ π

0
pχ(χ) cosχdχ = 0

Avoid isotropy: pχ(χ) 6= sinχ
2

For F−1
pχ , use ansatz pχ(χ) = (C0 + C1 cosχ+ C2 cos2 χ+ C3 cos3 χ) sinχ

C2 and C3 satisfy constraint, C0 and C1 minimize
∫ π

0

(
pχ(χ)− p̄χ(χ)

)2
dχ
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Manufactured Cross Section (to evaluate 〈∆vMp 〉coll analytically)

With
∫ π

0
pχ(χ) cosχdχ = 0,

〈
∆vMp

〉
coll =

w∆t
(
N cell
p − 1

)
2∆V

∫ ∞
−∞

σ(g)g(vq − vp)fv(vq, t)dvq

If σ(g) =
Nσ−1∑
n=0

σng
2n−1,

〈
∆vMp

〉
coll =

w∆t
(
N cell
p − 1

)
2∆V

Nσ−1∑
n=0

σnfn(vp, t),

where fn(vp, t) =
∫ ∞
−∞

g2n(vq − vp)fv(vq, t)dvq can be computed analytically

Numerical and manufactured source terms balanced with manufactured pχ and σ
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Manufactured Solutions for the Poisson Equation

Manufacture the electric scalar potential φM (x, t) and solve

∆φ = − ρ
ε0

+ ∆φM + ρM

ε0
,

where ∆φM is evaluated analytically

Evaluate manufactured charge density analytically as well:

ρM (x, t) = q

∫ ∞
−∞

fM (x,v, t)dv = qfx(x, t)
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Discretization Parameters

• Discretize spatial domain with uniform cells of length ∆xi

• Numerically integrate with time step size ∆t

• Represent physical particles with Np computational particles

• Average the collision algorithm Navg times

Refine these quantities together:

∆xi ∼ ∆t ∼ h,

Np ∼ h−q, Navg ∼ h−r, Ncell ∼ h−3, N cell
p ∼ h−(q−3)

Measure discrete L1, L2, and L∞ norms, refine so error in L∞ is at most O(h2)

• Collisional: q = 7 ! Np ∼ h−7, r = 5 , Navg ∼ h−5

• Collisionless: q = 5 ! Np ∼ h−5
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Error Sources

Field Quantities
• Trilinear basis functions: O(h2) for φ, O(h2) recovery for E

• Sampling error: O
(
N
−1/2
p

)
for φ, O

(
N
−1/2
p h−1/2) for E

• Particle-position error: O
(
hpx

)
for φ and E

Particles (second-order-accurate velocity Verlet time integration)

vn+1/2
p = vnp + 1

2

(
q

m

(
Ep −EM

p

)n ∆t+
〈
∆vp

〉n
coll −

〈
∆vMp

〉n
coll + ∆t

(
v̇Mp

)n )
+ τnvp ,

xn+1
p = xnp + ∆t

(
vp + ẋMp − vMp

)n+1/2
+ τnxp ,

vn+1
p = vn+1/2

p + 1
2

(
q

m

(
Ep −EM

p

)n+1∆t+
〈
∆vp

〉n+1/2
coll −

〈
∆vMp

〉n+1/2
coll + ∆t

(
v̇Mp

)n+1
)

+ τ
n+1/2
vp

• Per-step collision error: encollp =
〈
∆vp

〉n
coll −

〈
∆vMp

〉n
coll

• Per-step Lorentz-force acceleration error: enaccp = q

m

(
Ep −EM

p

)n∆t

• Time-integration truncation errors: τnvp + τ
n+1/2
vp ∼ O(∆t3), τnxp ∼ O(∆t3)
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Manufactured Cross Section and Anisotropy

. −1.0 .. −0.5 .0.0 0.5 1.0 1.5 2.0 2.5 3.0

ln(g/v̄)

−47

−46

−45

−44

−43

−42

ln
(σ
/σ̄

)

Tabulated

Fit

0.0 0.2 0.4 0.6 0.8 1.0

χ/π

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p χ
(χ

)

Isotropic (α = 1)

Anisotropic (α = 2)

Anisotropic fit

• Cross section σ(g) =
Nσ−1∑
n=0

σng
2n−1, Nσ = 3

– Log-scale least squares fitting of data from Itikawa J. Phys. Chem. Ref. (2009)
– Goal is reasonable cross section, not exact fit

• Anisotropy F−1
pχ , pχ(χ) = (C0 + C1 cosχ+ C2 cos2 χ+ C3 cos3 χ) sinχ

– p̄χ(χ) = α cos(χ/2)2α−1 sin(χ/2), 1 ≤ α ≤ 2, (variable soft sphere)
– Isotropic (α = 1), anisotropic (α > 1)
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Manufactured Solutions and Discretizations

Particle distribution function: fM (x,v, t) = fx(x, t)fv(v, t),

fx(x, t) = N
3∏
i=1

fxi(xi, t), fv(v, t) =
3∏
i=1

fvi(vi, t),

Potential: φM (x, t) = φ̄et/(2T ) sin
(

2π
[
x

Lx
− 1

7

])
sin
(

2π
[
y

Ly
− 1

5

])
sin
(

2π
[
z

Lz
− 1

3

])

v̄ = 106 m/s, Lxi = 3/2 m, T = Lxi/(10v̄), N = 1020 particles
q = e, m = 3× 108me, φ̄ = 1010 V, periodic BCs

Collisional Collisionless

Disc. T/∆t Ncelli Ncell Navg Np Np/Ncell Np Np/Ncell

1 8 8 512 32 10,240 20.00 10,240 20.00
2 12 12 1,728 243 174,960 101.25 77,760 45.00
3 16 16 4,096 1,024 1,310,720 320.00 327,680 80.00
4 20 20 8,000 3,125 6,250,000 781.25 1,000,000 125.00
5 24 24 13,824 7,776 22,394,880 1620.00 2,488,320 180.00
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Particle Distribution Function fM(x, v, t) = fx(x, t)fv(v, t)

. −4 .. −3 .. −2 .. −1 .0 1 2 3 4

u/v̄

0.00
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0.15

0.20
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f u
(u
,t
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,t
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y
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Particle Distribution Function fM(x, v, t) = fx(x, t)fv(v, t), t = T
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Error Convergence at t = T : Collisional, Uncoupled

0.9 1.0 1.1 1.2 1.3 1.4

log10 Ncelli

−3.5
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g

1
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(ε
α 2
/ᾱ

),
α

=
{φ
,
u
,
v
,
w
,
x
,
y
,
z
}

O(h2)
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φ

u
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y
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z
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v
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z
}

O(h2)

O(h2)

O(h2)

φ

u

x

v

y

w

z

• Particles and fields uncoupled (single run)
– Field does not affect particles (q/m = 0)
– Particles do not affect field (q = 0)

• Particle error due to collisions, time integration
– Velocity and position: O(h2) in L1, L2, L∞

• Field error due to basis functions
– Potential: O(h2) in L1, L2, L∞
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Error Convergence at t = T : Collisional, One-Way Coupled
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/ᾱ

),
α

=
{φ
,
u
,
v
,
w
,
x
,
y
,
z
}

O(h2)

O(h2)

O(h2)

φ

u

x

v

y

w

z

0.9 1.0 1.1 1.2 1.3 1.4

log10 Ncelli

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

lo
g

1
0
(ε
α ∞
/ᾱ
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• Particles and fields one-way coupled (2 separate runs)
– Field affects particles but is not affected by particles (q/m 6= 0, q = 0)
– Particles affect field but are not affected by field (q 6= 0, q/m = 0)

• Particle error due to collisions, time integration, field basis function error
– Velocity and position: O(h2) in L1, L2, L∞

• Field error due to basis functions, finite sampling, collisions, integration
– Potential: O(h2) in L1, L2, L∞
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Error Convergence at t = T : Collisional, Fully Coupled
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• Particles and fields fully coupled (single run)
– Field affects particles (q/m 6= 0)
– Particles affect field (q 6= 0)

• Particle error due to collisions, time integration, all field errors
– Velocity and position: O(h2) in L1, L2, L∞

• Field error due to basis functions, finite sampling, all particle errors
– Potential: O(h2) in L1, L2, L∞
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Error Convergence at t = T : Collisionless, One-Way Coupled
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• Particles and fields one-way coupled (2 separate runs)
– Field affects particles but is not affected by particles (q/m 6= 0, q = 0)
– Particles affect field but are not affected by field (q 6= 0, q/m = 0)

• Particle error due to time integration, field basis function error
– Velocity and position: O(h2) in L1, L2, L∞

• Field error due to basis functions, finite sampling, particle time integration
– Potential: O(h2) in L1, L2, L∞
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Error Convergence at t = T : Collisionless, Fully Coupled

0.9 1.0 1.1 1.2 1.3 1.4

log10 Ncelli

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

lo
g

1
0
(ε
α 2
/ᾱ
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• Particles and fields fully coupled (single run)
– Field affects particles (q/m 6= 0)
– Particles affect field (q 6= 0)

• Particle error due to time integration, all field errors
– Velocity and position: O(h2) in L1, L2, L∞

• Field error due to basis functions, finite sampling, all particle errors
– Potential: O(h2) in L1, L2, L∞
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Outline

• Introduction
• Equations
• Manufactured Solutions for Collisional Plasma Dynamics
• Error Analysis
• Numerical Examples
• Summary

– Closing Remarks
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Closing Remarks

• Presented code-verification approach for collisional plasma dynamics

• Added manufactured source terms to equations of motion (weights unmodified)

• Manufactured distribution function, potential, cross section, and anisotropy

• Computed manufactured source terms analytically, averaged collisions

• Ran single simulation per discretization

• Achieved expected convergence rates for collisional and collisionless cases
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Questions? bafreno@sandia.gov brianfreno.github.io
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