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Introduction
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Collisional Plasma Dynamics

e Important for many scientific and engineering applications
— Hypersonic and reentry air plasmas affecting heat loads and radiation
— Environmental and biomedical plasmas for ozone, sterilization, and cleaning
— Electric propulsion plasmas in Hall-effect thrusters and ion engines

— Semiconductor and thin-film plasmas for etching and deposition

¢ Modeled via particle-in-cell (PIC) with collision algorithm (MCC/DSMC)
— Solve Maxwell’s equations to compute electromagnetic fields on grid
Solve particle equations of motion due to Lorentz force and collisions
— Interpolate EM fields to particles, distribute particle properties to grid

— Model particle collisions with direct simulation Monte Carlo (DSMC)
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Introduction
o

Verification and Validation

Credibility of computational physics codes requires verification and validation

e Validation assesses how well models represent physical phenomena

— Compare computational results with experimental results

— Assess suitability of models, model error, and bounds of validity

¢ Verification assesses accuracy of numerical solutions against expectations

— Solution verification estimates numerical error for particular solution

— Code verifi

ation assesses correctness of numerical-method implementation
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Introduction
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Discretization Error

Code verification assesses correctness of numerical-method implementation
e Continuous equations are numerically
rluy=0 —
e Discretization error is introduced in solution
e=u,—u
¢ Discretization error should decrease as discretization is refined

lime=20

h—0
e More rigorously, should decrease at an expected rate

lell ~ Ch?

e Measuring error requires exact solution — usually unavailable
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Manufactured Solutions

Manufactured solutions are popular alternative

e Manufacture an arbitrary solution uyg

¢ Insert manufactured solution into continuous equations to get residual term
r(uys) # 0
¢ Add residual term to
= r(ums)
to coerce solution to manufactured solution

— UumMSs
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Code-Verification Goal

¢ Existing code-verification work

— Plasma dynamics without collisions: distribution modeled by Vlasov equation
— Electrostatics (negligible magnetic field influence): Poisson equation

— 1D-1V, 2D-2V

e Qur code-verification goal
— Plasma dynamics with collisions: distribution modeled by Boltzmann equation
— Electromagnetics: Maxwell’s equations

- 3D-3V
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Outline

¢ Particle-in-Cell Method
— Overview
— Equations of Motion for Charged Particles
— Maxwell’s Equations
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Particle-in-Cell Method
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Overview

e Place weighted computational particles randomly in phase space
(according to distribution function)

¢ Interpolate particle charge onto spatial mesh nodes
e Solve Maxwell’s equations on spatial mesh for electromagnetic fields
e Interpolate fields onto particles

¢ For each particle, integrate equations of motion due to

— Lorentz force from electromagnetic fields

Collisions between particles
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Particle-in-Cell Method
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Equations of Motion for Charged Particles (Single Species)

Equations of motion for each particle:

dw d d F
;Ltp - 0 % = Vp, ﬂ - 7p + acoll

e w), is computational particle weight

F, = g(E(xp, t) + v, x B(xy, t)) is Lorentz force
m

¢ E and B are electric and magnetic fields

e m and ¢ are species mass and charge

® a. is acceleration due to collision

Increasing N, distribution function evolution approaches Boltzmann equation:

of F oof_ ﬂ)
8t+v varm 8v7<8t coll

o f(xp, Vp,t) is particle distribution function, (9f/9t)  is collision term

coll
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cle-in-Cell Method
O

Equations of Motion for Charged Particles (Single Species)

Equations of motion for each particle (collisionless):

dwy, dx dv F 0
=0, Py Yp _ TP
a0 a0 m 2l

e w), is computational particle weight

F, = g(E(xp, t) + v, x B(xy, t)) is Lorentz force
m

¢ E and B are electric and magnetic fields

e m and ¢ are species mass and charge

® a. is acceleration due to collision

Vlasov
Increasing Np, distribution function evolution approaches Boltzmmann equation:
0
af F of
— -V — . = =
ot Vi m Ov

o f(xp, Vp,t) is particle distribution function, (9f/9t)  is collision term

coll
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Particle-in-Cell Method
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Equations of Motion for Charged Particles (Single Species)

Equations of motion for each particle (electrostatic):

dw d d F
;Ltp - 0 % = Vp, ﬂ - 7p + acoll

e w), is computational particle weight

F, = %(E(Xp, t) + vy xw(%s Lorentz force

¢ E and B are electric and magnetic fields

e m and ¢ are species mass and charge

® a.. is acceleration due to collision

Increasing N, distribution function evolution approaches Boltzmann equation:

of F oof_ ﬂ)
8t+v varm 8v7<8t coll

o f(xp, Vp,t) is particle distribution function, (9f/9t)  is collision term

coll
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Particle-in-Cell Method
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Maxwell’s Equations

Gauss’s law v.E="
€0
Gauss’s law for magnetism V-B=0
. . 0B
Faraday’s law of induction VxE= B
N OE
Ampere’s circuital law VxB=puylJ+ 605

9]
e Charge conservation a—f +V-J=0
’ o0
e Charge density p(x,t) = q/ f(x,v,t)dv
—00
00
¢ Electric current density J(x,t) = q/ f(x, v, t)vdv
J—o0

e ¢y and po are permittivity and permeability of free space
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Particle-in-Cell Method
(o] lo}

Maxwell’s Equations (Electromagnetic Case)

Gauss’s law V-E= :] Satisfied due to
charge conservation
Gauss’s law for magnetism V-B=0
, . . 0B
Faraday’s law of induction VxE= s
N OE
Ampere’s circuital law VxB=puylJ+ 605

9]
e Charge conservation 07;) +V.-J=0
’ o0
e Charge density p(x,t) = q/ f(x,v,t)dv
—00
00
¢ Electric current density J(x,t) = q/ f(x, v, t)vdv
—0o0

e ¢p and po are permittivity and permeability of free space
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Particle-in-Cell Method
ooe

Maxwell’s Equations (Electrostatic Case)

Gauss’s law v.E=" —  |A¢ = e
€0 €0
Gauss’s law for magnetism V-B=0 T
Faraday’s law of induction VxE= —01?‘0 - E=-Vo¢
OE
Ampere’s circuital law VxB= /1,(,<J + (()7>
(

9]
e Charge conservation 07;) +V.-J=0
’ o0
e Charge density p(x,t) = q/ f(x,v,t)dv
—00
00
¢ Electric current density J(x,t) = q/ f(x, v, t)vdv
—0o0

e ¢p and po are permittivity and permeability of free space
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e Existing Work for Collisionless Plasma Dynamics
Collisionless, Electrostatic Plasma Dynamics
— Manufactured Solutions
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Existing Work
]

Collisionless, Electrostatic Plasma Dynamics

Collisionless electrostatic plasma dynamics:

dw,, dx, dv q
=0 P=v,, —2=2E, Ap=-—
dt ’ dt Ve dt m P ¢ €0

 Riva et al., Physics of Plasmas (2017)
— 1D, electrons
— Maximum error in E computed over all x, and ¢
— Multiple approaches with varying expense to measure error in f

— Results convincingly converge at expected rates
(o

e Tranquilli et al., Journal of Computational Physics (2022)

— 2D, electrons and ions
— L? norm of error in p, E, and ¢

— Argues against the need to measure error in f
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Existing Work
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Manufactured Solutions

Manufacture
e Particle distribution function fys(x,v,t) = fx(x, 1) fv(V)
e Electromagnetic field E/(x, 1)

Compute source terms based on Vlasov and Poisson equations

a 0
Sy(x,v,t) = 52[ “Viu+ EM C‘)fij Se(x,1) =V -Ey — %

Modify weight evolution equation to be

@ Far (xp(8),v,5(0).0) (1), v (1), 1) J11(%5(0). v,(0),0)
L[w N Al Xp(t), vp(t), w _ Sp(xp(t), vp(t),t w » _ M
"= ) " w0 T 0, v,0)

e Particles move without regard to manufactured distribution function
* x, and v, when weighted by w,,, approach fy

¢ Risk of negative weights
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Outline

e Approach for Collisional Plasma Dynamics
— Manufactured Particle Distribution Function
— Collisionless Plasma Dynamics
Collisional Plasma Dynamics
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Approach
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Manufactured Particle Distribution Function

Assume fj; takes the form of 3D analog of previous work:
.f]\*[(xﬂ v, t) = fX(X7 t)fv(v)a
where

: T : : : 2 v
fx(xat) = Ngf;l,‘j(wi7t)7 fV(V) - i:]T[lf’v(/l/yi): f’u(vi) = ﬁ%e i /7 y

and

La, 00 .
Jo; (@4, t)dz; =1, / Sfo(vi)dv; =1, / fx(x,t)dx = N
0 —00 v

e N is the number of physical particles in the volume

o V=TI, Ly, is the volume
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Approach
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Collisionless Plasma Dynamics

e Follow approach of Riva et al., start with 1D electrostatic plasma dynamics

¢ After achieving expected convergence rates, generalize to account for
— Additional dimensions
— Magnetic field influence

— Multiple species
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0000000

Collisional Plasma Dynamics without Lorentz Force

Apply method of manufactured solutions to equations of motion:

Xp = Vp + XM — VM, Vp = (7;0) 3T < M)
At/ on

¢ Avoids negative weights

e x)7 and v); obtained from uniform random samples Fx, Fy, € [0, 1]
e Inversely query cumulative distribution functions Fx(x,,t) and Fy(vp)
e Obtain x,; and vy, for each computational particle at each time step
e In general, Xp; # Vs

e vjr = 0 since fy(v) does not depend on time

(AV]\]/AIL/)

o Tepresents analytic expression for the change due to collisions

Example time discretization (forward Euler):

n+l _ . n n n n+l _ _n n+1 n+1 n
vt = vy 4 (Avy) o — (Avr) s X, =x, + v AL+ X — (X + VAt
—_———— —
stochastic deterministic
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Approach
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Source Term for Binary Elastic Collisions (same mas

Post-collision velocities are obtained from conservation of momentum and energy:

1 cos €sin x
(vi+v —gn), ' :§(V1+V+gn), n={sinesiny ;,
cos X

/
vV =

N[ =

where g = |v — vi| = [v/ — V|| is the relative speed

. . . S / 1
For a given particle, the change in velocity is Av =v' —v = §(v1 — v —gn)
Compute expected change in velocity for particle across possible collision partners:

1 00 2 T B
3 / / / / Peonn(9)(Np — 1)(vy — vy, — gm) far(x, v, t)p(x, €)dxdedvidx
_2Jv/-xJo Jo

coll — ~ oo 2w
/ / / / Sa(x, v, )p(x, €)dxdedvidx
V' J—o0 JO 0

P.on(g) is likelihood of collision happening, p(x, €) is probability density function

(Avar)

(Avy 1>COH is deterministic, should be computed analytically — complicated by ¢
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Approach
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Manufactured Anisotropy

Model probability density function as separable: p(x,€) = py(x)pe(€), where

27 pw 2 T
/ / p(x, €)dxde =1, / pe(€)de =1, / py(X)dx =1
0 0 0 0

1
Azimuthally symmetric scattering: p.(e) = 7
0
In expression for <AVM>COH7

2T e g 2T T T
g / / np(x, €)dxde = -— / / np, (x)dxde = 9{0, 0, / Py (x) cos xdx}
Jo Jo 27 Jo Jo Jo
- =0
Avoid dependency on g from anisotropy: / Dy (X) cos xdx =0
0
sin x
2
For Fp’xl7 use ansatz py(x) = (Co + Cycosx + Co cos? x + C3 cos® ) sin x

Avoid isotropy: py(x) #

T
Cy and (5 satisfy constraint, Cp and C'; minimize / (py(x) — ﬁX(X))QdX
Jo
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Approach
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Manufactured Cross Section

With / Py (X) cos xdx =0,
0

wyAt(N, — 1
(B = = [ o (g)gv1 — vy fu(vr vy
Ny—1
IfO’ Z O_”JQH 1’
n=0
wyAt(N, — 1) Ne=!
<Av“w>coll = % Z onfy (Vp)a

n=0

oo}
where f,(v,) = / g*"(v1 — vp) fv(v1)dvy can be computed exactly:
—o0

1 1 y . 4
fo(vp) = —vp, fi(vp) = 2(101) + 202 )v,,~ fo(vy) = 71(231174 + 84522/'12) + 4'1;;)vp
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Approach
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Velocity Evolution

n+l _ _n no_ n
vy =Vt (AV) o = (AVM)
N——

stochastic deterministic

n . . . . .
* (Avy),, is computed from a collision algorithm
e (Collision algorithms are stochastic — consider random subset of collisions

3

e Run collision algorithm N,y times, average outcome for each particle
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e Get uniform random samples for each position and velocity component
e Integrate equations of motion
e Each time step, get x,s and vy from inverse of time-varying CDF

e Measure discrete LP norm of particle position and velocity errors

— One simulation per refinement
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Approach
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Refinement Ratios

Measure error using discrete LP norm of particle positions and velocities

e Discretization error depends on At, Ax, Ny, Nave, Rinterp

Aty oo = Moy Nawg  hinterpy
7At27 Np Ny Navg Nave, Rinterp hinterpy

e Refinement ratios: ra; =

 Time integration error is locally O(At?), globally O(At)
— Decrease N, error at same rate as global time error
Decrease N, error at same rate as local time error

e Error due to N, is O(N,, Y 2) (central limit theorem) — TN, =T,

2 .
4 )a Neon ~ NavngAt — TNy — Tit

e Error due to the collisions is O(N, v

coll

e Error due to interpolating inverse CDFs is O(h?merp) — Thinterp — TAt
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e Numerical Examples
— Overview
— Results
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Numerical Examples
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Manufactured Cross Section and Anisotrop;

—18.6 0.7
—e— Tabulated — Isotropic (a = 1)
—18.8 ) 0.6 ) N 4
— Fit . — Anisotropic (a = 2)
—19.0 0.5 — Anisotropic fit
— —19.2
= — 04
£ 194 z
@ =03
= -196
-19.8 02
-20.0 01
902 . . . . . . . . 0.0
-04 -02 00 02 04 06 08 1.0 12 14 0.0 0.2 0.4 0.6 0.8 1.0
logio(9/?) X/w

No—1
¢ Cross section o(g) = Z ong® L, N, =3
n=0
— Log-scale least squares fitting of data from Itikawa J. Phys. Chem. Ref. (2009)

¢ Anisotropy Fp’xl, Py(x) = (Co + Oy cos x + Oy cos® x + Cs cos® ) sin x
Dy (x) = avcos(x/2)2* 1 sin(x/2), 1<a<2, (variable soft sphere)

— Isotropic (o = 1), anisotropic (a > 1)
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Numerical Examples

Manufactured Distribution Function and Discretizations

e Particle distribution function fus(x,v,t) = fx(x,1) fv(V),

3
fX(th) = NH sz(T%f)v fv(v) = H fv(’Ui)

i=1 i=1
o o =105 m/s, Ly, =3/2m, T = L,,/(109), periodic BCs

e Discretizations

Disc. Np T/At Navg 1/hinterp

1 50 10 50 1000
2 200 20 400 2000
3 800 40 3200 4000
4 3200 80 25600 8000
) 12800 160 204800 16000
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— Analytical
[ Numerical

y/Ly
0.55 Rili -
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[ Numericz [ Numerical
0.45 0.45
0.40 0 0.40 0.40
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Error

N,

Z,u, v, w

f
SIS

/

*

809 1.0 1.1 1.2 1.3 14 15 16 1.7 1.8 1.9 20 2.1

A 8 09 10 1.1 1.2 1.3 14 15 1.6 1.7 1.8 1.9 2.0 2.1

logig /Ny logyg /N,
0.5
f 00F e . el = max oy, — o |
e Discrete LP error norms for particle positions 5
and velocities: p =1, 2, oo i l

e Each component converges at expected rate O(h) I

12 | N-L/3

avg

— w —— 2

-3.0 . -
08 09 1.0 1.1 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9 20 2.1
logyo /Ny
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e Summary
— Closing Remarks
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Summary
[ ]

Closing Remarks

¢ Presented code-verification progress for 3D-3V collisional plasma dynamics
¢ Add manufactured source terms to equations of motion, weights unmodified

e Manufacture distribution function, cross section, anisotropy

Analytically compute manufactured source terms, average collisions

e Achieved expected convergence rates without Lorentz force
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Questions? bafreno@sandia.gov brianfreno.github.io
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