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Plasma Dynamics

e Plasma dynamics important for many scientific and engineering applications
Fusion energy research — stable conditions for nuclear fusion
— Space physics — interactions between solar wind and planetary magnetospheres
Accelerator physics — particle beam dynamics for research, medicine, industry

— Semiconductor manufacturing — plasma-assisted processes for circuits

¢ Plasma dynamics commonly modeled by particle-in-cell (PIC) method
— Maxwell’s equations to compute electromagnetic fields on grid
— Equations of motion due to Lorentz force for large number of charged particles

— Fields interpolated to particles, particle properties distributed to grid
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Introduction
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Verification and Validation

Credibility of computational physics codes requires verification and validation

e Validation assesses how well models represent physical phenomena

— Compare computational results with experimental results

— Assess suitability of models, model error, and bounds of validity

¢ Verification assesses accuracy of numerical solutions against expectations

— Solution verification estimates numerical error for particular solution

— Code verifi

ation assesses correctness of numerical-method implementation
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Discretization Error

Code verification assesses correctness of numerical-method implementation
e Continuous equations are numerically
rluy=0 —
e Discretization error is introduced in solution
e=u,—u
¢ Discretization error should decrease as discretization is refined

lime=20

h—0
e More rigorously, should decrease at an expected rate

lell ~ Ch?

e Measuring error requires exact solution — usually unavailable
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Manufactured Solutions

Manufactured solutions are popular alternative

e Manufacture an arbitrary solution uyg

¢ Insert manufactured solution into continuous equations to get residual term
r(uys) # 0
¢ Add residual term to
= r(ums)
to coerce solution to manufactured solution

— UumMSs
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Code-Verification Goal

¢ Existing code-verification work

— Plasma dynamics without collisions: distribution modeled by Vlasov equation
— Electrostatics (negligible magnetic field influence): Poisson equation

— 1D-1V, 2D-2V

e Qur code-verification goal
— Plasma dynamics with collisions: distribution modeled by Boltzmann equation
— Electromagnetics: Maxwell’s equations

- 3D-3V
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¢ Particle-in-Cell Method
— Overview
— Equations of Motion for Charged Particles
— Collision Term
— Maxwell’s Equations
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Particle-in-Cell Method
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Overview

e Place weighted computational particles randomly in phase space
(according to distribution function)

e Interpolate particle charge onto spatial mesh nodes
¢ Solve Maxwell’s equations on spatial mesh for electromagnetic fields
e Interpolate fields onto particles

e For each particle, integrate equations of motion
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Particle-in-Cell Method
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Equations of Motion for Charged Particles (Single Species)

Equations of motion for each particle:

dwp (5-]0/575)0011 ﬁ

dt — f(x,(0),v,(0),0)

_ dvp _Fp
a7 dt ~— m

* w), is computational particle weight, (§f/dt)  is numerical collision term

coll

o f(xp, Vp,t) is particle distribution function

F,= E(E(Xp., t) + v, x B(xy,t)) is Lorentz force
m
¢ E and B are electric and magnetic fields

e m and q are species mass and charge

Increasing N, distribution function evolution approaches Boltzmann equation:

of F of_ ﬂ)
8t+v varm (?vi(@t coll

* (0f/0t),,, is analytical collision term
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Particle-in-Cell Method
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Equations of Motion for Charged Particles (Single Species)

Equations of motion for each particle (collisionless):

0
duy I b, o dv, T
dt f(xp(0),vp(0),0) " . — m

* w), is computational particle weight, (§f/dt)  is numerical collision term

coll

o f(xp, Vp,t) is particle distribution function

F,= E(E(Xp., t) + v, x B(xy,t)) is Lorentz force
m
¢ E and B are electric and magnetic fields

e m and q are species mass and charge

Vlasov
Increasing Np, distribution function evolution approaches Boltzmmann equation:
0
af F of
_ v-V .4 —
ot i U m Ov

* (0f/0t),,, is analytical collision term

@ Sandia National Laboratories



Particle-in-Cell Method
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Equations of Motion for Charged Particles (Single Species)

Equations of motion for each particle (electrostatic):

dwp (5-]0/575)0011 ﬁ

dt — f(x,(0),v,(0),0)

_ dvp _Fp
a7 dt ~— m

* w), is computational particle weight, (§f/dt)  is numerical collision term

coll

o f(xp, Vp,t) is particle distribution function

F, = E(E(Xp., t) + vy XM?S Lorentz force
m

¢ E and B are electric and magnetic fields

e m and q are species mass and charge

Increasing N, distribution function evolution approaches Boltzmann equation:

of F of_ ﬂ)
8t+v varm (?vi(@t coll

* (0f/0t),,, is analytical collision term
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Particle-in-Cell Method
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Collision Term

Analytical collision term for binary elastic collisions is 6D integral

(5r) = [ [ 1w 6.0 = v, v oo )2

e v and v’ are pre-collision velocities of two particles
- _ .. . .
e v and v’ are post-collision velocities of two particles

v/ — v| is relative speed

e o is differential scattering cross section of collision

e () is solid angle defining direction of post-collision particle scattering

Odd power of g complicates analytical evaluation of integral
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Particle-in-Cell Method
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Maxwell’s Equations

Gauss’s law v.E="
€0
Gauss’s law for magnetism V-B=0
. . 0B
Faraday’s law of induction VxE= B
N OE
Ampere’s circuital law VxB=puylJ+ 605

9]
e Charge conservation a—f +V-J=0
’ o0
e Charge density p(x,t) = q/ f(x,v,t)dv
—00
00
¢ Electric current density J(x,t) = q/ f(x, v, t)vdv
J—o0

e ¢y and po are permittivity and permeability of free space
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Particle-in-Cell Method
(o] le}

Maxwell’s Equations (Electromagnetic Case)

Gauss’s law V-E= :] Satisfied due to
charge conservation
Gauss’s law for magnetism V-B=0
, . . 0B
Faraday’s law of induction VxE= s
N OE
Ampere’s circuital law VxB=puylJ+ 605

9]
e Charge conservation 07;) +V.-J=0
’ o0
e Charge density p(x,t) = q/ f(x,v,t)dv
—00
00
¢ Electric current density J(x,t) = q/ f(x, v, t)vdv
—0o0

e ¢p and po are permittivity and permeability of free space
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Particle-in-Cell Method
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Maxwell’s Equations (Electrostatic Case)

Gauss’s law v E="L E=-V¢—Ag=-"
€0 €0

Gauss’s law for magnetism V-B=0

0B
Faraday’s law of induction VxE= f%

¢

) OE
Ampere’s circuital law VxB= /1,(,<J + (()7>
(

9]
e Charge conservation 07;) +V.-J=0
’ o0
e Charge density p(x,t) = q/ f(x,v,t)dv
—00
00
¢ Electric current density J(x,t) = q/ f(x, v, t)vdv
—0o0

e ¢p and po are permittivity and permeability of free space
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Outline

e Existing Work
Collisionless, Electrostatic Plasma Dynamics
— Manufactured Solutions
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Existing Work
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Collisionless, Electrostatic Plasma Dynamics

Collisionless electrostatic plasma dynamics:

dw,, dx, dv q
=0 P=v,, —2=2E, Ap=-—
dt ’ dt Ve dt m P ¢ €0

 Riva et al., Physics of Plasmas (2017)
— 1D, electrons
— Maximum error in E computed over all x, and ¢
— Multiple approaches with varying expense to measure error in f

— Results convincingly converge at expected rates
(o

e Tranquilli et al., Journal of Computational Physics (2022)
— 2D, positively and negatively charged particles
— L? norm of error in p, E, and ¢

— Argues against the need to measure error in f
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Existing Work
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Manufactured Solutions

Manufacture
e Particle distribution function fas(x,v,t) = fx(x,t)fv(v)

e Electromagnetic field Eps(x, t)

Compute source terms based on Vlasov and Poisson equations

of 7]
Sr(x,v,t) = IfM -Viu + E\[ fM, Sg(x,t) =V -Ej — L
ot ov €0
Modify weight evolution equation to be
d
d 20/ (), vp().0) g (s, (1), v (t), )

R ES A ) Y TR ORA)
where

fu(x(0),v,(0),0)
fO(Xz)((])ﬁVI>((J))
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Proposed Approach
[ ]

Outline

¢ Proposed Approach
— Particle Distribution Function
— Collisionless Plasma Dynamics
Collisional Plasma Dynamics
— Error Metrics
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Proposed Approach
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Particle Distribution Function

Assume f)s takes the form of 3D analog of previous work:

f;\](x-, v, t) - fx(xa t)fv(v)a
where

. . X 2 u? —u?/p?
fV(V) = ,fl}(“’)fq;(’l}),f77(71))7 f?)(“) = ﬁ@je

Dependencies require

/OC fo(w)du =1, / fx(x,t)dx =n-V,
—00 Vv

where n is number density and V' is domain volume
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Proposed Approach
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Collisionless Plasma Dynamics

e Follow approach of Riva et al., start with 1D electrostatic plasma dynamics

¢ After achieving expected convergence rates, generalize to account for
— Additional dimensions
— Magnetic field influence

— Multiple species
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Collisional Plasma Dynamics: Weight Evolution

With collisions, weight evolution is

1) = 70 (0), v,(0)

dt?
Method of manufactured solutions modifies collisional weight evolution to be

d Sf + (5f/5t)c 11
—wp(t) =
dt fO(XP(O)vvp(U))
where
Ofm Fy Ofm <3f;\1>
Sp = ot v Vvt m  0vy It /.o
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Proposed Approach
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Collisional Plasma Dynamics: Collision Integral

Assume isotropic scattering, same mass for particles, and cross-section form

Nmax
0= } ong
n=0

2n—1
e Precedent for manufacturing convenient cross sections: Maxwell molecules

* 0, can be chosen to optimally fit actual cross-section data

Cross-section form yields closed-form expression for collision integral

<6£1> (evt) = Fxcst) S anFu(v),

oll n=0

where, in spherical coordinates with x and e polar and azimuthal angles,

%) 27 T on . ,
Fw) = [ 7 @) = R0 fo ()] sin xdx dedv
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Collisional Plasma Dynamics: Collision Inte

Fo(v) = /j: ,/U_W /;:f‘,(\"/)f\,(\”/’) — fo(V) fo (V)] sin xdx de dv' (@ =wu/v, o =0/, ® =w/v)

(17([L2+[2+L[~2) I ~12 ~12 ~12 - #1042 ~10,~2 ~10,~2 ~2 210 ~2 ~10 #~2 ~10
= 0T0 I8 [360(° + 0% 4+ w*) —700(4 0% + 4 0" 4+ 0 0T 4+ a0 + 4D 4+ %)
+2969(a%0" + 0% + aSw? + 080 + a'w® + 610%) + 1362(a0%w? + a*Pw? + a*o%w®)
+ 8058(059° + abw° + 0%@S) — 4426(aSs w? + a'0%0? 4 %02t + a2e00t + oS + a%o1a)
+ 92340 94!
—988(aM + 9'0 + w'0) + 34814(a59% + 420% + aPw? + VPw? + a*® + 0?0®)
— 4732(a5%" + a%9% + aSw® + 000 + S + #00) — 76960(a° 0% w? + 42050 + ao*®)
+ 52728(a ot ? + atoa?t 4 a*otat)
+ 3718(2% + 8° + ©%) — 103532(a%0% + a20° + aSw? + 5w? 4 A%’ + 9%w°)
+ 79794(0% 0 4 0t + o*w?) + 391248(a 02?4 a2otw? + a2 0% o?)
+ 58344(25 4 0% + @°) + 386100(a9? + a%0* + a*d? + 0*0? + a2t + 020?) — 194594404%0%0?
+65208(at + 91 + ') — 401544(a%0? + @%b + 0%0?) + 329472(a% + 0% + %) + 277992
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Proposed Approach
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Collisional Plasma Dynamics: Collision Integral (n = 1)

Fi(v) = /j: V/UZW ./[f:f‘,(\"/)f\,(f/’) — fo (V) fo (V)] g% sin xdx de dv' (o =u/v, b =v/v, W =w/v)

(77([L2+P2+m2) [ ~14 ~14 ~14 3 #2612 21242 712, 42 212 ~2 ~2 ~12 #~2 A12
= T [720(0°" + 0% 4+ ") — 680(4°0~ + 40" + 4 “0” + 0 “0° + 4 " + 07 7)
+4538(0'%%* + a%0'0 4 a'%? + 010" + 2t + 90'0) — 76(a' 0% w? + a20'%%? + a9 w'")
+22054(0%0% + 0%6% + a®0° + 0°0° + a%® + 0%0®)
—190(a%0"%? + atew? + a0t + aot ot + ato?w® + a*o'0®)
— 1588(0595w? + a%0%0° + 22050%) + 764(aC0*w* + atoOo* + atetw®)
+1504(a'? 4+ 02 4+ 0'?) 4+ 77664(2'%0% + 420" + a'%%? 4 0'0%% + @20 + 9*0'0)
+23847(a%%" + a'0% + aPat + 0%t + ata® 4 o10®) — 55266(at0%0? + 4208 w? + a2 0®)
— 104626(a%0° + a%0° + 850°) + 70506(aSo%? + atebw? + A% w? + 0200t + ato?w® + a*ota®)
+ 45270(a 8 0t + b0t + atoSaet + ateta®)
—18096(a" + 910 + @0 — 184574(a%0% + a20° + aP0? + 0% 0? + a*e® + 0%0®)
+ 347568(a50* + 040% 4 a%w* + 0%0* + ated + 0*0) + 1942096(a50%w? + a*0%0? + 020%0%)
+409500(a 9 0? + a'o? ot + a*otat)
+257114(a® + 0° + @) + 800228(a5%% 4 4%0° + a%%? + 0%%? + a2w® + 2w)
+1512654(a*0* + ot + o*t) — 43229472(at %02 + a*ote? + ato*at)
+ 751608(a° + 05 + 0°%) + 3289572(0 0% + 020! + atw? + 01? + a2wt + 0%t) — 1906407364 020>
+1403688(a + 91 + ') — 3181464(0*0? + @%b + 0*0?) + 4839120(a° + 9% + %) + 4169880]
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Proposed Approach
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Error Metrics: Electromagnetic Field

Measure maximum error in E and B on mesh over all time:

ep, = max max| EM(x,t) — En, (x,1)],
L X

€, = max maX|E,f}(x,t) — B, (x,1)]
t X :

ep, = max max| E(x,t) — E. (x,1)],
L X

£p, = max ma‘x|B(,'Lf’(X7 t) — By, (x,1)
X
£p, = max n13X|BZ’(X, t) — B, (x, )],

EB., = IlltélXHIHX|Bg’(X7t) — By (X7t)‘
X
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Proposed Approach
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Error Metrics: Particle Distribution Function

Measure difference between manufactured and empirical f on boundaries:

T oo (o) Ny

£f, = maxmax / / / @'y, 2, t)dy dzda’ — 3 Bz — xp)),
o t x J—00 J—o0 J—0 p=1

N

£f, = maxmax / / fx z,y, 2z, t)dx dz dy' — Z Wiy —yp))s
y p=1
Ny

£f, = maxmax / / / Ix(@,y, 2 t)de dy d2' —Zu' z =2,
N t z p 1

€, = maxmax <[00f1 Ydu' )(/ fx(x,t) dx) Zw,, —up)
£f, = maxmax </ fo(0")dv' ></ fx(x,1) dx) Z Wpd(v —vp)

v

0o
£f, = maxmax (/_OC folw")dw ) </_OO fx(x,t) (1x> Z Wy —wy)

p=1

Extension of approach from Riva et al. — most tractable option for multiple dimensions
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Proposed Approach
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Error Metrics: Discretization Error

¢ Discretization error depends on

— Time step At

Mesh size Ax
— Number of computational particles N,

— Problem dimension

e Convergence rates are less straightforward
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Outline

e Summary
— Closing Remarks
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Summary
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Closing Remarks

¢ Presented a code-verification plan for 3D-3V collisional plasma dynamics
e (Collisionless contributions follow established approaches

¢ Collisional approach achieved by analytically evaluating integral

Manufacture differential scattering cross section of collision

e Expected convergence rates are not straightforward
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Questions? bafreno@sandia.gov brianfreno.github.io
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