Code-Verification Techniques for Electromagnetic Surface Integral Equations

> Brian A. Freno Neil R. Matula Sandia National Laboratories

SIAM Conference on Computational Science and Engineering March 3–7, 2025

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Introduct	
000000	

Outline

- Introduction
- The Method-of-Moments Implementation of the MFIE
- Code-Verification Approaches
- Numerical Examples
- Summary

$\begin{array}{c} \text{Introduction} \\ \bullet \circ \circ \circ \circ \circ \circ \end{array}$	MFIE 0000	Code Verification	
Outline			

- Introduction
 - Electromagnetic Surface Integral Equations
 - Verification and Validation
 - Error Sources in Electromagnetic Surface Integral Equations
 - This Work
- The Method-of-Moments Implementation of the MFIE
- Code-Verification Approaches
- Numerical Examples
- Summary

Introduction MFIE Code Verification Numerical Examples Su c•0000 0000 00000000 000 000 Electromagnetic Surface Integral Equations

- Are commonly used to model electromagnetic scattering and radiation
- Relate electric surface current to incident electric and/or magnetic field
- Discretize surface of electromagnetic scatterer with elements
- Evaluate 4D reaction integrals over 2D test and source elements
- Contain singular integrands when test and source elements are near

Credibility of computational physics codes requires verification and validation

- Validation assesses how well models represent physical phenomena
 - Compare computational results with experimental results
 - Assess suitability of models, model error, and bounds of validity
- Verification assesses accuracy of numerical solutions against expectations
 - Solution verification estimates numerical error for particular solution
 - Code verification verifies correctness of numerical-method implementation

- Code verification most rigorously assesses rate at which error decreases
- Error requires exact solution usually unavailable
- Manufactured solutions are popular alternative
 - Manufacture an arbitrary solution
 - Insert manufactured solution into governing equations to get residual term
 - Add residual term to equations to coerce solution to manufactured solution
- For integral equations, few instances of code verification exist
- Analytical differentiation is straightforward analytical integration is not
- Numerical integration is necessary, generally incurs an approximation error
- Therefore, manufactured source term may have its own numerical error

3 sources of numerical error:

- Domain discretization: Representation of curved surfaces with planar elements
 - Second-order error for curved surfaces, no error for planar surfaces
 - Error reduced with curved elements
- Solution discretization: Representation of solution or operators
 - Common in solution to differential, integral, and integro-differential equations
 - Finite number of basis functions to approximate solution
 - Finite samples queried to approximate underlying equation operators
- Numerical integration: Quadrature
 - Analytical integration is not always possible
 - For well-behaved integrands,
 - Expect integration error at least same order as solution-discretization error
 - Less rigorously, error should decrease with more quadrature points
 - For (nearly) singular integrands, monotonic convergence is not assured

$\begin{array}{c} \text{Introduction} \\ \circ \circ \circ \circ \circ \bullet \end{array}$	MFIE 0000	Code Verification	Summary 00
This Work			

Isolate solution-discretization error

- Eliminate integration error by manufacturing solution and Green's function
- Select unique solution through optimization when equations are singular

Isolate numerical-integration error

- Cancel solution-discretization error using basis functions
- Eliminate solution-discretization error by avoiding basis functions

Address domain-discretization error

- Account for curvature integrate over curved triangular elements
- Neglect curvature integrate over planar triangular elements

	$\underset{\bullet \circ \circ \circ}{\text{MFIE}}$	Code Verification	
Outline			

- Introduction •
- The Method-of-Moments Implementation of the MFIE
 - The Magnetic-Field Integral Equation
 - Discretization
- Code-Verification Approaches
- Numerical Examples

MFIE 0000 The Magnetic-Field Integral Equation

In time-harmonic form, scattered magnetic field $\mathbf{H}^{\mathcal{S}}$ computed from current

Scattered magnetic field
$$\mathbf{H}^{S}(\mathbf{x}) = \frac{1}{\mu} \nabla \times \mathbf{A}(\mathbf{x})$$

Magnetic vector potential $\mathbf{A}(\mathbf{x}) = \mu \int_{S'} \mathbf{J}(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') dS'$
Green's function $G(\mathbf{x}, \mathbf{x}') = \frac{e^{-jkR}}{4\pi R}, \qquad R = |\mathbf{x} - \mathbf{x}'|$
Singularity when $R \to 0$

J is electric surface current density S' = S is surface of scatterer μ and ϵ are permeability and permittivity of surrounding medium $k = \omega \sqrt{\mu \epsilon}$ is wavenumber

Compute **J** from incident magnetic field $\mathbf{H}^{\mathcal{I}}$ ($\mathbf{n} \times (\mathbf{H}^{\mathcal{S}} + \mathbf{H}^{\mathcal{I}}) = \mathbf{J}$):

$$\frac{1}{2}\mathbf{J} - \mathbf{n} \times \int_{S'} [\mathbf{J}(\mathbf{x}') \times \nabla' G(\mathbf{x}, \mathbf{x}')] dS' = \mathbf{n} \times \mathbf{H}^{\mathcal{I}}$$

Discretize surface with triangles, approximate \mathbf{J} with RWG basis functions:

$$\mathbf{J}_h(\mathbf{x}) = \sum_{j=1}^{n_b} J_j \mathbf{\Lambda}_j(\mathbf{x})$$

Project MFIE onto vector-valued RWG basis functions

Introduction MFIE Code Verification Numerical E 000000 Discretized Problem

al Examples

Summary 00

In matrix–vector form, solve for \mathbf{J}^h :

 $\mathbf{Z}\mathbf{J}^h=\mathbf{V}$

$$Z_{i,j} = a(\mathbf{\Lambda}_j, \mathbf{\Lambda}_i), \qquad J_j^h = J_j, \qquad V_i = b(\mathbf{H}^{\mathcal{I}}, \mathbf{\Lambda}_i)$$

Impedance matrix Current vector Excitation vector

$$\begin{split} a(\mathbf{u}, \mathbf{v}) &= \frac{1}{2} \int_{S} \bar{\mathbf{v}}(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) dS - \int_{S} \bar{\mathbf{v}}(\mathbf{x}) \cdot \left(\mathbf{n}(\mathbf{x}) \times \int_{S'} \left[\mathbf{u}(\mathbf{x}') \times \nabla' G(\mathbf{x}, \mathbf{x}') \right] dS' \right) dS \\ b(\mathbf{u}, \mathbf{v}) &= \int_{S} \bar{\mathbf{v}}(\mathbf{x}) \cdot \left[\mathbf{n}(\mathbf{x}) \times \mathbf{u}(\mathbf{x}) \right] dS \end{split}$$

Intr		ti	
	00		

Outline

- Introduction •
- The Method-of-Moments Implementation of the MFIE
- Code-Verification Approaches
 - Manufactured Surface Current and Green's Function
 - Solution-Discretization Error
 - Numerical-Integration Error
 - Domain-Discretization Error
- Numerical Examples
- Summary

- Continuous equations: $r_i(\mathbf{J}) = a(\mathbf{J}, \mathbf{\Lambda}_i) b(\mathbf{H}^{\mathcal{I}}, \mathbf{\Lambda}_i) = 0$
- Discretized equations: $r_i(\mathbf{J}_h) = a(\mathbf{J}_h, \mathbf{\Lambda}_i) b(\mathbf{H}^{\mathcal{I}}, \mathbf{\Lambda}_i) = 0$

Method of manufactured solutions modifies discretized equations:

 $\mathbf{r}(\mathbf{J}_h) = \mathbf{r}(\mathbf{J}_{\mathrm{MS}}),$

 \mathbf{J}_{MS} is manufactured solution, $\mathbf{r}(\mathbf{J}_{\mathrm{MS}})$ is computed exactly

Modified discretized equations: $a(\mathbf{J}_{h}, \mathbf{\Lambda}_{i}) = \underbrace{a(\mathbf{J}_{MS}, \mathbf{\Lambda}_{i})}_{= b(\mathbf{H}^{\mathcal{I}}, \mathbf{\Lambda}_{i}): \text{ implement via } \mathbf{H}^{\mathcal{I}}}$

$$\mathbf{H}^{\mathcal{I}} = \frac{1}{2} \mathbf{J}_{\mathrm{MS}} \times \mathbf{n} - \int_{S'} \left[\mathbf{J}_{\mathrm{MS}}(\mathbf{x}') \times \nabla' \boldsymbol{G}(\mathbf{x}, \mathbf{x}') \right] dS'$$

MMS incorporated through $\mathbf{H}^{\mathcal{I}}$ – no additional source term required

Integrals with G cannot be computed analytically or, when $R \to 0$, accurately

Inaccurately computing $\mathbf{H}^{\mathcal{I}}$ contaminates convergence studies

Manufacture Green's function: $G_{\rm MS}(R) = G_0 \left(1 - \frac{R^2}{R_m^2}\right)^d$, $R_m = \max_{\mathbf{x}, \mathbf{x}' \in S} R$ and $d \in \mathbb{N}$

Reasoning:

1) Even powers of R permit integrals to be computed analytically for many \mathbf{J}_{MS} 2) G_{MS} increases when R decreases, as with actual G

Freno et al. Code Verification for Electromagnetic Surface Integral Equations 15 /

- Error due to basis-function approximation of solution: $\mathbf{J}_h(\mathbf{x}) = \sum J_j \mathbf{\Lambda}_j(\mathbf{x})$
- Measured with discretization error: $\mathbf{e}_{\mathbf{J}} = \mathbf{J}^h \mathbf{J}_n$

 $\|\mathbf{e}_{\mathbf{J}}\| \le C_{\mathbf{J}}h^{p_{\mathbf{J}}}$

- J_{n_j} : component of \mathbf{J}_{MS} flowing from T_j^+ to T_j^-
- $C_{\mathbf{J}}$: function of solution derivatives
- $h\,:\,{\rm measure}$ of mesh size
- $p_{\mathbf{J}}$: order of accuracy
- Compute $p_{\mathbf{J}}$ from $\|\mathbf{e}_{\mathbf{J}}\|$ across multiple meshes (expect $p_{\mathbf{J}} = 2$ for RWG)
- Avoid numerical-integration error contamination \rightarrow integrate exactly ($G_{\rm MS}$)

For terms with $G_{\rm MS}$, \mathbf{Z} is practically singular \rightarrow infinite solutions for \mathbf{J}^h Choose \mathbf{J}^h closest to \mathbf{J}_n (J_{n_j} : $\mathbf{J}_{\rm MS}$ from $T_j^+ \rightarrow T_j^-$) that satisfies $\mathbf{Z}\mathbf{J}^h = \mathbf{V}_{\rm MS}$ Compute pivoted QR factorization of \mathbf{Z}^H to determine rank Express \mathbf{J}^h in terms of basis \mathbf{Q} :

 $\mathbf{J}^h = \mathbf{Q}_1 \mathbf{u} + \mathbf{Q}_2 \mathbf{v}$

u: coefficients that satisfy $\mathbf{Z}\mathbf{J}^h = \mathbf{V}_{MS}$

v: coefficients that bring \mathbf{J}^h closest to \mathbf{J}_n , given **u**

Compute \mathbf{v} by minimizing

- $\|\mathbf{e}_{\mathbf{J}}\|_2$: closed-form solution may require finer meshes when measuring $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$
- $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$: more expensive (linear programming) does not require finer meshes when measuring $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$

- Error due to quadrature evaluation of integrals on both sides of equation
- Measured by functionals

 $e_a(\mathbf{u}) = a^q(\mathbf{u}, \mathbf{u}) - a(\mathbf{u}, \mathbf{u})$ $e_b(\mathbf{u}) = b^q(\mathbf{H}_{MS}^{\mathcal{I}}, \mathbf{u}) - b(\mathbf{H}_{MS}^{\mathcal{I}}, \mathbf{u})$ $|e_a| < C_a h^{p_a}$ $|e_b| < C_b h^{p_b}$

 a^q , b^q : quadrature evaluation of a and b C_a, C_b : functions of integrand derivatives p_a, p_b : order of accuracy of quadrature rules

- With multiple meshes, compute p_a and p_b from $|e_a|$ and $|e_b|$
- Avoid solution-discretization error contamination \rightarrow cancel or eliminate it

2 complementary approaches to avoiding solution-discretization error:

• Solution-discretization error cancellation

$$\begin{aligned} e_a(\mathbf{J}_{h_{\mathrm{MS}}}) &= a^q(\mathbf{J}_{h_{\mathrm{MS}}}, \mathbf{J}_{h_{\mathrm{MS}}}) - a(\mathbf{J}_{h_{\mathrm{MS}}}, \mathbf{J}_{h_{\mathrm{MS}}}) \\ e_b(\mathbf{J}_{h_{\mathrm{MS}}}) &= b^q(\mathbf{H}_{\mathrm{MS}}^{\mathcal{I}}, \mathbf{J}_{h_{\mathrm{MS}}}) - b(\mathbf{H}_{\mathrm{MS}}^{\mathcal{I}}, \mathbf{J}_{h_{\mathrm{MS}}}) \end{aligned}$$

 $\mathbf{J}_{h_{\mathrm{MS}}}$ is the basis-function representation of \mathbf{J}_{MS} $e_a(\mathbf{J}_{h_{\mathrm{MS}}})$ and $e_b(\mathbf{J}_{h_{\mathrm{MS}}})$ are proportional to their influence on $\mathbf{e}_{\mathbf{J}} = \mathbf{J}^h - \mathbf{J}_n$

• Solution-discretization error elimination

$$e_{a}(\mathbf{J}_{\mathrm{MS}}) = a^{q}(\mathbf{J}_{\mathrm{MS}}, \mathbf{J}_{\mathrm{MS}}) - a(\mathbf{J}_{\mathrm{MS}}, \mathbf{J}_{\mathrm{MS}})$$
$$e_{b}(\mathbf{J}_{\mathrm{MS}}) = b^{q}(\mathbf{H}_{\mathrm{MS}}^{\mathcal{I}}, \mathbf{J}_{\mathrm{MS}}) - b(\mathbf{H}_{\mathrm{MS}}^{\mathcal{I}}, \mathbf{J}_{\mathrm{MS}})$$

Triangular elements approximate curved S with faceted approximation S_h

- Accounting for curvature
 - Integrate over curved triangles that conform to S instead of planar triangles
 - Use solution-discretization error elimination approach
 - Assess curvature implementation and numerical integration
- Neglecting curvature
 - Use solution-discretization error cancellation approach
 - Assess numerical integration by computing integrals on S_h instead of S

Intr		ti	
	00		

Outline

- Introduction •
- The Method-of-Moments Implementation of the MFIE
- Code-Verification Approaches
- Numerical Examples
 - No Curvature: Overview
 - No Curvature: Solution-Discretization Error
 - No Curvature: Numerical-Integration Error
 - Curvature: Overview
 - Curvature: Domain-Discretization Error

- Manufacture solution for 2D strip of class ${\cal C}^2$
- Wrap strip around lateral surfaces of prisms
- Solution is product of ξ and η dependencies
 - $\,\xi$ dependency: sinusoid with a single period
 - η dependency: cubed sinusoid with a half period
- Current flows along ξ

🚮 Sandia National Laboratories

	$\min_{\mathbf{J}^{h}} \left\ \mathbf{e}_{\mathbf{J}} \right\ _{\infty}$		$\min_{\mathbf{J}^h}$	$\ \mathbf{e_J}\ _2$
Mesh	С	RP	С	RP
1-2	2.0800	2.0653	2.0811	1.2935
2 - 3	2.0141	2.0529	2.1055	1.4193
3 - 4	2.0303	2.0193	1.9159	1.5150
4 - 5	2.0196	2.0163	1.6421	1.5847
5-6	2.0061	2.0242	1.6677	1.6372
6-7	2.0133	2.0158	1.5800	1.6779
7 - 8	2.0113	2.0167	1.6282	1.7104
8-9	2.0037	2.0122	1.6664	1.7369
9 - 10	2.0086	2.0117	1.6974	1.7589
10 - 11	2.0053	2.0118	1.7231	1.7776

Both norms are able to detect the coding error

The Sandia National Laboratories

-14

-16

-18

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

→ 12

 $\log_{10} \sqrt{n_t}$

eno et al. Code Verification for Electromagnetic Surface Integral Equations 2

 $\mathcal{O}(h^4)$

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

→ 12

 $\log_{10} \sqrt{n_t}$

-14

-16

-18

Freno et al. Code Verification for Electromagnetic Surface Integral Equations 28 /

🚮 Sandia National Laboratories

Freno et al. Code Verification for Electromagnetic Surface Integral Equations 29 /

Freno et al. Code Verification for Electromagnetic Surface Integral Equations 30 /

Freno et al. Code Verification for Electromagnetic Surface Integral Equations 32

Sandia National Laboratories

🚮 Sandia National Laboratories

Introdu	
000000	

Outline

- Introduction •
- The Method-of-Moments Implementation of the MFIE
- Code-Verification Approaches
- Numerical Examples
- Summary
 - Closing Remarks

Summarv

Closing Remarks

3 error sources in integral equations:

- Solution-discretization error isolated
 - Integrated exactly
 - Optimized to select unique solution when equations were singular
- Numerical-integration error isolated
 - Canceled solution-discretization error used basis functions
 - Eliminated solution-discretization error did not use basis functions
- Domain-discretization error addressed
 - Accounted for curvature integrated over curved triangular elements
 - Neglected curvature integrated over planar triangular elements

Achieved expected orders of accuracy with and without coding errors

Questions?	bafr	eno@sandia.gov	brianfreno.g	ithub.io
Introduction	MFIE	Code Verification	Numerical Examples	Summary

Additional Information

- B. Freno, N. Matula, W. Johnson Manufactured solutions for the method-of-moments implementation of the EFIE Journal of Computational Physics (2021) arXiv:2012.08681
- B. Freno, N. Matula, J. Owen, W. Johnson Code-verification techniques for the method-of-moments implementation of the EFIE Journal of Computational Physics (2022) arXiv:2106.13398
- B. Freno, N. Matula Code verification for practically singular equations Journal of Computational Physics (2022) arXiv: 2204.01785
- B. Freno, N. Matula Code-verification techniques for the method-of-moments implementation of the MFIE Journal of Computational Physics (2023) arXiv: 2209.09378
- B. Freno, N. Matula Code-verification techniques for the method-of-moments implementation of the CFIE Journal of Computational Physics (2023) arXiv:2302.06728
- B. Freno, N. Matula, R. Pfeiffer, E. Dohme, J. Kotulski Manufactured solutions for an electromagnetic slot model Journal of Computational Physics (2024) arXiv:2406.14573

