Code-Verification Techniques for Hypersonic Reacting Flows in Thermochemical Nonequilibrium

> Brian A. Freno Brian R. Carnes V. Gregory Weirs Sandia National Laboratories

ASME Verification & Validation Symposium May 19–20, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned rubsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

000000	000000	000000	000000000000000000000000000000000000000	000	00000000	00
Introduction	Equations	Spatial Accuracy	Spatial Results	Source Term	Source Results	Summary

• Introduction

ULLIIE

- Governing Equations
- Verification Techniques for Spatial Accuracy
- Spatial-Discretization Verification Results
- Verification Techniques for Thermochemical Source Term
- Thermochemical-Source-Term Verification Results
- Summary

Introduction \bullet 00000	Equations	Spatial Accuracy 000000	Spatial Results 000000000000000000		Summary 00
Outline					

- Introduction
 - Hypersonic Flow
 - Sandia Parallel Aerodynamics and Reentry Code (SPARC)
 - Verification and Validation
- Governing Equations
- Verification Techniques for Spatial Accuracy
- Spatial-Discretization Verification Results
- Verification Techniques for Thermochemical Source Term
- Thermochemical-Source-Term Verification Results
- Summary

Introduction	Spatial Accuracy		Summary
000000			

Hypersonic Flow

Hypersonic flows and underlying aerothermochemical phenomena

- Important in design & analysis of vehicles exiting/reentering atmosphere
- High flow velocities and stagnation enthalpies
 - Induce chemical reactions
 - Excite thermal energy modes
- Aerodynamic and thermochemical models require full coupling

Sandia Parallel Aerodynamics and Reentry Code (SPARC)

- Under development at Sandia National Laboratories
- Compressible computational fluids dynamics code
- Models transonic and hypersonic reacting turbulent flows
- Solves transient heat equation and equations associated with decomposing and non-decomposing ablators
- One- and two-way couplings between fluid-dynamics and ablation solvers

Verification and Validation

Credibility of computational physics codes requires verification and validation

- Validation assesses how well models represent physical phenomena
 - Computational results are compared with experimental results
 - Assess suitability of models, model error, and bounds of validity
- Verification assesses accuracy of numerical solutions against expectations
 - Solution verification estimates numerical error for particular solution
 - $-\ Code\ verification\ verifies\ correctness\ of\ numerical-method\ implementation$

Introduction	Spatial Accuracy	Source Term	Summary
000000			

Code Verification

Code verification is focus of this work

- Governing equations are numerically discretized
 - Discretization error is introduced in solution
- Seek to verify discretization error decreases with refinement of discretization – Should decrease at an expected rate
- Use manufactured and exact solutions to compute error

Introduction	Spatial Accuracy		Summary
000000			

Code Verification

Code verification demonstrated in many computational physics disciplines

- Fluid dynamics
- Solid mechanics
- Heat transfer
- Multiphase flows
- Electrodynamics
 - Electromagnetism
- Fluid–structure interaction
- Radiation hydrodynamics

Code-verification techniques for hypersonic flows have been presented

- Single-species perfect gas
- Multi-species gas in thermal equilibrium

We present code-verification techniques for hypersonic reacting flows in thermochemical **nonequilibrium** and demonstrate effectiveness

- Spatial discretization
- Thermochemical source term

	Equations $\bullet 00000$	Spatial Accuracy 000000	Spatial Results 0000000000000000000		Summary 00
\cap \square					

Outline

- Introduction
- Governing Equations
 - Conserved Quantities
 - Vibrational Energy
 - Translational–Vibrational Energy Exchange
 - Chemical Kinetics
 - Scope of Code Verification
- Verification Techniques for Spatial Accuracy
- Spatial-Discretization Verification Results
- Verification Techniques for Thermochemical Source Term
- Thermochemical-Source-Term Verification Results
- Summary

Conservation of mass, momentum, and energy:

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c}\left(\mathbf{U}\right) = -\nabla \cdot \mathbf{F}_{p}\left(\mathbf{U}\right) + \nabla \cdot \mathbf{F}_{d}\left(\mathbf{U}\right) + \mathbf{S}\left(\mathbf{U}\right),$$

where

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \rho \mathbf{v} \\ \rho E \\ \rho e_v \end{cases}, \quad \mathbf{F}_c \left(\mathbf{U} \right) = \begin{bmatrix} \boldsymbol{\rho} \mathbf{v}^T \\ \rho \mathbf{v} \mathbf{v}^T \\ \rho E \mathbf{v}^T \\ \rho e_v \mathbf{v}^T \end{bmatrix}, \quad \mathbf{F}_p \left(\mathbf{U} \right) = \begin{bmatrix} \mathbf{0} \\ p \mathbf{I} \\ p \mathbf{v}^T \\ \mathbf{0}^T \end{bmatrix}, \quad \mathbf{F}_d \left(\mathbf{U} \right) = \begin{bmatrix} -\mathbf{J} \\ \boldsymbol{\tau} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_v - \mathbf{J}^T \mathbf{h})^T \\ (-\mathbf{q}_v - \mathbf{J}^T \mathbf{e}_v)^T \end{bmatrix},$$

$$\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{cases}, \quad \begin{aligned} & \boldsymbol{\rho} = \{\rho_1, \dots, \rho_{n_s}\}^T, \quad & \dot{\mathbf{w}} = \{\dot{w}_1, \dots, \dot{w}_{n_s}\}^T : \text{mass production rates per volume,} \\ & \boldsymbol{\theta} = \sum_{s=1}^{n_s} \rho_s, \quad & e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s}: \text{ mixture vibrational energy per mass,} \\ & p = \sum_{s=1}^{n_s} \frac{\rho_s}{M_s} \bar{R}T, \quad & \mathbf{e}_v = \{e_{v_1}, \dots, e_{v_{n_s}}\}^T: \text{ vibrational energies per mass,} \\ & Q_{t-v}: \text{ translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

Conservation of mass, momentum, and energy:

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c}\left(\mathbf{U}\right) = -\nabla \cdot \mathbf{F}_{p}\left(\mathbf{U}\right) + \nabla \cdot \mathbf{F}_{d}\left(\mathbf{U}\right) + \mathbf{S}\left(\mathbf{U}\right),$$

where

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \boldsymbol{\rho} \mathbf{v} \\ \boldsymbol{\rho} \boldsymbol{E} \\ \boldsymbol{\rho} \boldsymbol{e}_{v} \end{cases}, \quad \mathbf{F}_{c} \left(\mathbf{U} \right) = \begin{bmatrix} \boldsymbol{\rho} \mathbf{v}^{T} \\ \boldsymbol{\rho} \mathbf{v} \mathbf{v}^{T} \\ \boldsymbol{\rho} \boldsymbol{E} \mathbf{v}^{T} \\ \boldsymbol{\rho} \boldsymbol{e}_{v} \mathbf{v}^{T} \end{bmatrix}, \quad \mathbf{F}_{p} \left(\mathbf{U} \right) = \begin{bmatrix} \mathbf{0} \\ \boldsymbol{p} \mathbf{I} \\ \boldsymbol{p} \mathbf{v}^{T} \\ \mathbf{0}^{T} \end{bmatrix}, \quad \mathbf{F}_{d} \left(\mathbf{U} \right) = \begin{bmatrix} -\mathbf{J} \\ \boldsymbol{\tau} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_{v} - \mathbf{J}^{T} \mathbf{h})^{T} \\ (-\mathbf{q}_{v} - \mathbf{J}^{T} \mathbf{e}_{v})^{T} \end{bmatrix},$$

Multiple species

$$\begin{split} \mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{cases}, \quad & \mathbf{p} = \{\rho_1, \dots, \rho_{n_s}\}^T, \quad & \dot{\mathbf{w}} = \{\dot{w}_1, \dots, \dot{w}_{n_s}\}^T \text{: mass production rates per volume,} \\ \mathbf{p} = \sum_{s=1}^{n_s} \rho_s, \quad & e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s} \text{: mixture vibrational energy per mass,} \\ & p = \sum_{s=1}^{n_s} \frac{\rho_s}{M_s} \bar{R}T, \quad & \mathbf{e}_v = \{e_{v_1}, \dots, e_{v_{n_s}}\}^T \text{: vibrational energies per mass,} \\ & Q_{t-v} \text{: translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

Introduction Equations Spatial Accuracy Spatial Results Source Term Source Results Summary $\infty = 0$ Source Term Source Results Summary $\infty = 0$ Source Results Source Res

Conservation of mass, momentum, and energy:

$$\begin{split} & \overset{\text{Local time derivative}}{\frac{\partial \mathbf{U}}{\partial t}} + \nabla \cdot \mathbf{F}_{c}\left(\mathbf{U}\right) = -\nabla \cdot \mathbf{F}_{p}\left(\mathbf{U}\right) + \nabla \cdot \mathbf{F}_{d}\left(\mathbf{U}\right) + \mathbf{S}\left(\mathbf{U}\right), \end{split}$$

where

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \boldsymbol{\rho} \mathbf{v} \\ \boldsymbol{\rho} \mathbf{E} \\ \boldsymbol{\nu} \mathbf{v}^T \\ \boldsymbol{\rho} \mathbf{e} \\ \boldsymbol{v} \mathbf{v}^T \\ \boldsymbol{\rho} \mathbf{v} \\ \boldsymbol{v}^T \\ \boldsymbol{\rho} \mathbf{v} \\ \mathbf{v}^T \\$$

$$\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \{\rho_{1}, \dots, \rho_{n_{s}}\}^{T}, \quad \dot{\mathbf{w}} = \{\dot{w}_{1}, \dots, \dot{w}_{n_{s}}\}^{T} : \text{mass production rates per volume,} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \sum_{s=1}^{n_{s}} \rho_{s}, \quad e_{v} = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{\rho} e_{v_{s}} : \text{mixture vibrational energy per mass,} \\ p = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{M_{s}} \bar{R}T, \quad \mathbf{e}_{v} = \{e_{v_{1}}, \dots, e_{v_{n_{s}}}\}^{T} : \text{vibrational energies per mass,} \\ Q_{t-v} : \text{translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

Conservation of mass, momentum, and energy:

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c}(\mathbf{U}) = -\nabla \cdot \mathbf{F}_{p}(\mathbf{U}) + \nabla \cdot \mathbf{F}_{d}(\mathbf{U}) + \mathbf{S}(\mathbf{U})$$

where

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \rho \mathbf{v} \\ \rho E \\ \rho e_{\boldsymbol{v}} \end{cases}, \quad \mathbf{F}_{\boldsymbol{c}} \left(\mathbf{U} \right) = \begin{bmatrix} \boldsymbol{\rho} \mathbf{v}^{T} \\ \boldsymbol{\rho} \mathbf{v} \mathbf{v}^{T} \\ \boldsymbol{\rho} E \mathbf{v}^{T} \\ \boldsymbol{\rho} e_{\boldsymbol{v}} \mathbf{v}^{T} \end{bmatrix}, \quad \mathbf{F}_{\boldsymbol{p}} \left(\mathbf{U} \right) = \begin{bmatrix} \mathbf{0} \\ p \mathbf{I} \\ p \mathbf{v}^{T} \\ \mathbf{0}^{T} \end{bmatrix}, \quad \mathbf{F}_{\boldsymbol{d}} \left(\mathbf{U} \right) = \begin{bmatrix} -\mathbf{J} \\ \boldsymbol{\tau} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_{\boldsymbol{v}} - \mathbf{J}^{T} \mathbf{h})^{T} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_{\boldsymbol{v}} - \mathbf{J}^{T} \mathbf{h})^{T} \end{bmatrix},$$

$$\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{cases}, \quad \begin{pmatrix} \rho = \{\rho_1, \dots, \rho_{n_s}\}^T, & \dot{\mathbf{w}} = \{\dot{w}_1, \dots, \dot{w}_{n_s}\}^T : \text{mass production rates per volume,} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{cases}, \quad \begin{pmatrix} \rho = \sum_{s=1}^{n_s} \rho_s, & e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s} : \text{ mixture vibrational energy per mass,} \\ p = \sum_{s=1}^{n_s} \frac{\rho_s}{M_s} \bar{R}T, & \mathbf{e}_v = \{e_{v_1}, \dots, e_{v_{n_s}}\}^T : \text{ vibrational energies per mass,} \\ Q_{t-v} : \text{ translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

Conservation of mass, momentum, and energy:

Pressure flux gradient

 $\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c}\left(\mathbf{U}\right) = -\nabla \cdot \mathbf{F}_{p}\left(\mathbf{U}\right) + \nabla \cdot \mathbf{F}_{d}\left(\mathbf{U}\right) + \mathbf{S}\left(\mathbf{U}\right),$

where

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \rho \mathbf{v} \\ \rho E \\ \rho e_v \end{cases}, \quad \mathbf{F}_c \left(\mathbf{U} \right) = \begin{bmatrix} \boldsymbol{\rho} \mathbf{v}^T \\ \rho \mathbf{v} \mathbf{v}^T \\ \rho E \mathbf{v}^T \\ \rho e_v \mathbf{v}^T \end{bmatrix}, \quad \mathbf{F}_p \left(\mathbf{U} \right) = \begin{bmatrix} \mathbf{0} \\ p \mathbf{I} \\ p \mathbf{v}^T \\ \mathbf{0}^T \end{bmatrix}, \quad \mathbf{F}_d \left(\mathbf{U} \right) = \begin{bmatrix} -\mathbf{J} \\ \boldsymbol{\tau} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_v - \mathbf{J}^T \mathbf{h})^T \\ (-\mathbf{q}_v - \mathbf{J}^T \mathbf{e}_v)^T \end{bmatrix},$$

$$\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \{\rho_{1}, \dots, \rho_{n_{s}}\}^{T}, \quad \dot{\mathbf{w}} = \{\dot{w}_{1}, \dots, \dot{w}_{n_{s}}\}^{T} : \text{mass production rates per volume,} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \sum_{s=1}^{n_{s}} \rho_{s}, \quad e_{v} = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{\rho} e_{v_{s}} : \text{mixture vibrational energy per mass,} \\ p = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{M_{s}} \bar{R}T, \quad e_{v} = \{e_{v_{1}}, \dots, e_{v_{n_{s}}}\}^{T} : \text{vibrational energies per mass,} \\ Q_{t-v} : \text{translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

Sandia National Laboratories

Conservation of mass, momentum, and energy:

Diffusive flux gradient

 $\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c}\left(\mathbf{U}\right) = -\nabla \cdot \mathbf{F}_{p}\left(\mathbf{U}\right) + \nabla \cdot \mathbf{F}_{d}\left(\mathbf{U}\right) + \mathbf{S}\left(\mathbf{U}\right),$

where

$$\mathbf{U} = \begin{cases} \rho \\ \rho \mathbf{v} \\ \rho E \\ \rho e_{v} \end{cases}, \quad \mathbf{F}_{c} \left(\mathbf{U} \right) = \begin{bmatrix} \rho \mathbf{v}^{T} \\ \rho \mathbf{v} \mathbf{v}^{T} \\ \rho E \mathbf{v}^{T} \\ \rho e_{v} \mathbf{v}^{T} \end{bmatrix}, \quad \mathbf{F}_{p} \left(\mathbf{U} \right) = \begin{bmatrix} \mathbf{0} \\ p \mathbf{I} \\ p \mathbf{v}^{T} \\ \mathbf{0}^{T} \end{bmatrix}, \quad \mathbf{F}_{d} \left(\mathbf{U} \right) = \begin{bmatrix} -\mathbf{J} \\ \boldsymbol{\tau} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_{v} - \mathbf{J}^{T} \mathbf{h}) \\ (-\mathbf{q}_{v} - \mathbf{J}^{T} \mathbf{e}_{v})^{T} \end{bmatrix},$$

$$\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \{\rho_{1}, \dots, \rho_{n_{s}}\}^{T}, \quad \dot{\mathbf{w}} = \{\dot{w}_{1}, \dots, \dot{w}_{n_{s}}\}^{T}: \text{ mass production rates per volume,} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \sum_{s=1}^{n_{s}} \rho_{s}, \quad e_{v} = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{\rho} e_{v_{s}}: \text{ mixture vibrational energy per mass,} \\ p = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{M_{s}} \bar{R}T, \quad e_{v} = \{e_{v_{1}}, \dots, e_{v_{n_{s}}}\}^{T}: \text{ vibrational energies per mass,} \\ Q_{t-v}: \text{ translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

Equations Spatial Accuracy 00000 Governing Equations: n_s Species in Vibrational Nonequilibrium

Thermochemical source term

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c}\left(\mathbf{U}\right) = -\nabla \cdot \mathbf{F}_{p}\left(\mathbf{U}\right) + \nabla \cdot \mathbf{F}_{d}\left(\mathbf{U}\right) + \mathbf{S}\left(\mathbf{U}\right),$$

OTT

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \boldsymbol{\rho} \mathbf{v} \\ \boldsymbol{\rho} E \\ \boldsymbol{\rho} e_v \end{cases}, \quad \mathbf{F}_c \left(\mathbf{U} \right) = \begin{bmatrix} \boldsymbol{\rho} \mathbf{v}^T \\ \boldsymbol{\rho} \mathbf{v} \mathbf{v}^T \\ \boldsymbol{\rho} E \mathbf{v}^T \\ \boldsymbol{\rho} e_v \mathbf{v}^T \end{bmatrix}, \quad \mathbf{F}_p \left(\mathbf{U} \right) = \begin{bmatrix} \mathbf{0} \\ \boldsymbol{\rho} \mathbf{I} \\ \boldsymbol{p} \mathbf{v}^T \\ \mathbf{0}^T \end{bmatrix}, \quad \mathbf{F}_d \left(\mathbf{U} \right) = \begin{bmatrix} -\mathbf{J} \\ \boldsymbol{\tau} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_v - \mathbf{J}^T \mathbf{h})^T \\ (-\mathbf{q}_v - \mathbf{J}^T \mathbf{e}_v)^T \end{bmatrix},$$

$$\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \{\rho_{1}, \dots, \rho_{n_{s}}\}^{T}, \quad \dot{\mathbf{w}} = \{\dot{w}_{1}, \dots, \dot{w}_{n_{s}}\}^{T} : \text{mass production rates per volume,} \\ \mathbf{v} = \left\{ \begin{array}{c} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{array} \right\}, \quad \begin{array}{l} \rho = \sum_{s=1}^{n_{s}} \rho_{s}, \quad e_{v} = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{\rho} e_{v_{s}} : \text{mixture vibrational energy per mass,} \\ p = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{M_{s}} \bar{R}T, \quad \mathbf{e}_{v} = \left\{ e_{v_{1}}, \dots, e_{v_{n_{s}}} \right\}^{T} : \text{vibrational energies per mass,} \\ Q_{t-v} : \text{translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

IntroductionEquationsSpatial AccuracySpatial ResultsSource TermSource ResultsSummary0000000000000000000000000000000000

Vibrational Energy

Mixture vibrational energy per mass:

$$e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s},$$

where

$$e_{v_s} = \begin{cases} \sum_{m=1}^{n_{v_s}} e_{v_{s,m}}(T_v) & \text{for molecules,} \\ 0 & \text{for atoms,} \end{cases}$$

and

$$e_{v_{s,m}}(T') = \frac{\bar{R}}{M_s} \frac{\theta_{v_{s,m}}}{\exp\left(\theta_{v_{s,m}}/T'\right) - 1}$$

 n_{v_s} : number of vibrational modes of species s ($n_{v_s} = 0$ for atoms) $\theta_{v_{s,m}}$: characteristic vibrational temperature of mode m of species seno et al. Code Verification for Flows in Thermochemical Nonequilibrium 11 / 51 (f) Sandia National Laboratories Equations Spatial Accuracy 000000

Translational–Vibrational Energy Exchange

Landau–Teller model:

$$Q_{t-v} = \sum_{s=1}^{n_s} \rho_s \sum_{m=1}^{n_{v_s}} \frac{e_{v_{s,m}}(T) - e_{v_{s,m}}(T_v)}{\langle \tau_{s,m} \rangle}$$

Translational-vibrational energy relaxation time for mode m of species s:

$$\langle \tau_{s,m} \rangle = \left(\sum_{s'=1}^{n_s} \frac{y_{s'}}{\tau_{s,m,s'}} \right)^{-1} + \left[\left(N_{\rm A} \sum_{s'=1}^{n_s} \frac{\rho_{s'}}{M_{s'}} \right) \sigma_{v_s} \sqrt{\frac{8}{\pi} \frac{\bar{R}T}{M_s}} \right]^{-1}$$

where

$$y_s = \frac{\rho_s/M_s}{\sum_{s'=1}^{n_s} \rho_{s'}/M_{s'}}, \quad \tau_{s,m,s'} = \frac{\exp\left[a_{s,m,s'}\left(T^{-1/3} - b_{s,m,s'}\right) - 18.42\right]}{p'}, \quad \sigma_{v_s} = \sigma'_{v_s}\left(\frac{50,000 \text{ K}}{T}\right)^2$$

p': pressure in atmospheres.

 $a_{s,m,s'}$ and $b_{s,m,s'}$: vibrational constants for mode m of species s with colliding species s' $N_{\rm A}$: Avogadro constant

 σ_{v_e} : collision-limiting vibrational cross section

 $\sigma'_{v_{*}}$: collision-limiting vibrational cross section at 50,000 K.

Introduction Equations Spatial Accuracy 000000

Chemical Kinetics

Mass production rate per volume for species s:

$$\dot{w}_s = M_s \sum_{r=1}^{n_r} (\beta_{s,r} - \alpha_{s,r}) (R_{f_r} - R_{b_r})$$

Forward and backward reaction rates for reaction r:

$$R_{f_r} = \gamma k_{f_r} \prod_{s=1}^{n_s} \left(\frac{1}{\gamma} \frac{\rho_s}{M_s}\right)^{\alpha_{s,r}} \quad \text{and} \quad R_{b_r} = \gamma k_{b_r} \prod_{s=1}^{n_s} \left(\frac{1}{\gamma} \frac{\rho_s}{M_s}\right)^{\beta_{s,r}}$$

Forward and backward reaction rate coefficients:

$$k_{f_r}(T_c) = C_{f_r} T_c^{\eta_r} \exp\left(- heta_r/T_c
ight) \qquad ext{and} \qquad k_{b_r}(T) = rac{k_{f_r}(T)}{K_{e_r}(T)}$$

Equilibrium constant for reaction r:

$$K_{e_r}(T) = \exp\left[A_{1_r}\left(\frac{T}{10,000 \text{ K}}\right) + A_{2_r} + A_{3_r}\ln\left(\frac{10,000 \text{ K}}{T}\right) + A_{4_r}\frac{10,000 \text{ K}}{T} + A_{5_r}\left(\frac{10,000 \text{ K}}{T}\right)^2\right]$$

 $\alpha_{s,r}$ and $\beta_{s,r}$: stoichiometric coefficients for species s in reaction r γ : unit conversion factor

 C_{f_r}, η_r, A_{i_r} : empirical parameters

 θ_r : activation energy of reaction r, divided by Boltzmann constant

 T_c : rate-controlling temperature ($T_c = \sqrt{TT_v}$ for dissociation, $T_c = T$ for exchange)

Scope of Code Verification

Conservation of mass, momentum, and energy:

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c}\left(\mathbf{U}\right) = -\nabla \cdot \mathbf{F}_{p}\left(\mathbf{U}\right) + \nabla \cdot \mathbf{F}_{d}\left(\mathbf{U}\right) + \mathbf{S}\left(\mathbf{U}\right),$$

where

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \rho \mathbf{v} \\ \rho E \\ \rho e_v \end{cases}, \quad \mathbf{F}_c \left(\mathbf{U} \right) = \begin{bmatrix} \boldsymbol{\rho} \mathbf{v}^T \\ \rho \mathbf{v} \mathbf{v}^T \\ \rho E \mathbf{v}^T \\ \rho e_v \mathbf{v}^T \end{bmatrix}, \quad \mathbf{F}_p \left(\mathbf{U} \right) = \begin{bmatrix} \mathbf{0} \\ p \mathbf{I} \\ p \mathbf{v}^T \\ \mathbf{0}^T \end{bmatrix}, \quad \mathbf{F}_d \left(\mathbf{U} \right) = \begin{bmatrix} -\mathbf{J} \\ \boldsymbol{\tau} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_v - \mathbf{J}^T \mathbf{h})^T \\ (-\mathbf{q}_v - \mathbf{J}^T \mathbf{e}_v)^T \end{bmatrix},$$

$$\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{cases}, \quad \begin{pmatrix} \rho = \{\rho_1, \dots, \rho_{n_s}\}^T, & \dot{\mathbf{w}} = \{\dot{w}_1, \dots, \dot{w}_{n_s}\}^T : \text{mass production rates per volume,} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{cases}, \quad \begin{pmatrix} \rho = \sum_{s=1}^{n_s} \rho_s, & e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s} : \text{ mixture vibrational energy per mass,} \\ p = \sum_{s=1}^{n_s} \frac{\rho_s}{M_s} \bar{R}T, & \mathbf{e}_v = \{e_{v_1}, \dots, e_{v_{n_s}}\}^T : \text{ vibrational energies per mass,} \\ Q_{t-v} : \text{ translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

Scope of Code Verification

Conservation of mass, momentum, and energy:

Non-diffusive flux gradients

Thermochemical source term

$$rac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c}\left(\mathbf{U}
ight) = - \nabla \cdot \mathbf{F}_{p}\left(\mathbf{U}
ight) + \nabla \cdot \mathbf{F}_{d}\left(\mathbf{U}
ight) + \mathbf{S}\left(\mathbf{U}
ight),$$

where

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \boldsymbol{\rho} \mathbf{v} \\ \boldsymbol{\rho} E \\ \boldsymbol{\rho} e_{\boldsymbol{v}} \end{cases}, \quad \mathbf{F}_{\boldsymbol{c}} \left(\mathbf{U} \right) = \begin{bmatrix} \boldsymbol{\rho} \mathbf{v}^{T} \\ \boldsymbol{\rho} \mathbf{v} \mathbf{v}^{T} \\ \boldsymbol{\rho} E \mathbf{v}^{T} \\ \boldsymbol{\rho} e_{\boldsymbol{v}} \mathbf{v}^{T} \end{bmatrix}, \quad \mathbf{F}_{\boldsymbol{p}} \left(\mathbf{U} \right) = \begin{bmatrix} \mathbf{0} \\ \boldsymbol{p} \mathbf{I} \\ \boldsymbol{p} \mathbf{v}^{T} \\ \mathbf{0}^{T} \end{bmatrix}, \quad \mathbf{F}_{\boldsymbol{d}} \left(\mathbf{U} \right) = \begin{bmatrix} -\mathbf{J} \\ \boldsymbol{\tau} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_{\boldsymbol{v}} - \mathbf{J}^{T} \mathbf{h})^{T} \\ (-\mathbf{q}_{\boldsymbol{v}} - \mathbf{J}^{T} \mathbf{e}_{\boldsymbol{v}})^{T} \end{bmatrix}$$

$$\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \{\rho_{1}, \dots, \rho_{n_{s}}\}^{T}, \quad \dot{\mathbf{w}} = \{\dot{w}_{1}, \dots, \dot{w}_{n_{s}}\}^{T} : \text{mass production rates per volume,} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \sum_{s=1}^{n_{s}} \rho_{s}, \quad e_{v} = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{\rho} e_{v_{s}} : \text{mixture vibrational energy per mass,} \\ p = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{M_{s}} \bar{R}T, \quad e_{v} = \{e_{v_{1}}, \dots, e_{v_{n_{s}}}\}^{T} : \text{vibrational energies per mass,} \\ Q_{t-v} : \text{translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

Introduction Equations Spatial Accuracy Spatial Results Source Term Source Results Summa ocoococo oco oco oco oco oco oco

Scope of Code Verification

Conservation of mass, momentum, and energy: Non-diffusive flux gradients $\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c} (\mathbf{U}) = -\nabla \cdot \mathbf{F}_{p} (\mathbf{U}) + \nabla \cdot \mathbf{F}_{d} (\mathbf{U}) + \mathbf{S} (\mathbf{U}),$ where Spatial discretization $\mathbf{U} = \begin{cases} \rho \\ \rho \mathbf{v} \\ \rho \mathbf{E} \\ \rho \mathbf{e}_{v} \end{cases}, \quad \mathbf{F}_{c} (\mathbf{U}) = \begin{bmatrix} \rho \mathbf{v}^{T} \\ \rho \mathbf{v} \mathbf{v}^{T} \\ \rho \mathbf{E} \mathbf{v}^{T} \\ \rho \mathbf{e}_{v} \mathbf{v}^{T} \end{bmatrix}, \quad \mathbf{F}_{p} (\mathbf{U}) = \begin{bmatrix} \mathbf{0} \\ \rho \mathbf{I} \\ p \mathbf{v}^{T} \\ \mathbf{0}^{T} \end{bmatrix}, \quad \mathbf{F}_{d} (\mathbf{U}) = \begin{bmatrix} -\mathbf{J} \\ \tau \\ (\tau \mathbf{v} - \mathbf{q} - \mathbf{q}_{v} - \mathbf{J}^{T} \mathbf{h})^{T} \\ (-\mathbf{q}_{v} - \mathbf{J}^{T} \mathbf{e}_{v})^{T} \end{bmatrix},$

 $\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{cases}, \quad \begin{array}{l} \rho = \left\{\rho_1, \dots, \rho_{n_s}\right\}^T, \quad \dot{\mathbf{w}} = \left\{\dot{w}_1, \dots, \dot{w}_{n_s}\right\}^T : \text{ mass production rates per volume,} \\ \rho = \sum_{s=1}^{n_s} \rho_s, \quad e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s}: \text{ mixture vibrational energy per mass,} \\ p = \sum_{s=1}^{n_s} \frac{\rho_s}{M_s} \bar{R}T, \quad \mathbf{e}_v = \left\{e_{v_1}, \dots, e_{v_{n_s}}\right\}^T: \text{ vibrational energies per mass,} \\ Q_{t-v} : \text{ translational-vibrational energy exchange,} \end{cases}$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

Scope of Code Verification

Conservation of mass, momentum, and energy:

Thermochemical source term

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_{c}(\mathbf{U}) = -\nabla \cdot \mathbf{F}_{p}(\mathbf{U}) + \nabla \cdot \mathbf{F}_{d}(\mathbf{U}) + \mathbf{S}(\mathbf{U}),$$

Implementation

$$\mathbf{U} = \begin{cases} \boldsymbol{\rho} \\ \rho \mathbf{v} \\ \rho E \\ \rho e_{v} \end{cases}, \quad \mathbf{F}_{c} \left(\mathbf{U} \right) = \begin{bmatrix} \boldsymbol{\rho} \mathbf{v}^{T} \\ \boldsymbol{\rho} \mathbf{v} \mathbf{v}^{T} \\ \boldsymbol{\rho} E \mathbf{v}^{T} \\ \rho e_{v} \mathbf{v}^{T} \end{bmatrix}, \quad \mathbf{F}_{p} \left(\mathbf{U} \right) = \begin{bmatrix} \mathbf{0} \\ p \mathbf{I} \\ p \mathbf{v}^{T} \\ \mathbf{0}^{T} \end{bmatrix}, \quad \mathbf{F}_{d} \left(\mathbf{U} \right) = \begin{bmatrix} -\mathbf{J} \\ \boldsymbol{\tau} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_{v} - \mathbf{J}^{T} \mathbf{h})^{T} \\ (\boldsymbol{\tau} \mathbf{v} - \mathbf{q} - \mathbf{q}_{v} - \mathbf{J}^{T} \mathbf{h})^{T} \end{bmatrix}$$

$$\mathbf{S}\left(\mathbf{U}\right) = \begin{cases} \dot{\mathbf{w}} \\ \mathbf{0} \\ Q_{t-v} + \mathbf{e}_{v}^{T} \dot{\mathbf{w}} \end{cases}, \quad \begin{aligned} \rho &= \{\rho_{1}, \dots, \rho_{n_{s}}\}^{T}, \quad \dot{\mathbf{w}} = \{\dot{w}_{1}, \dots, \dot{w}_{n_{s}}\}^{T} : \text{mass production rates per volume,} \\ \rho &= \sum_{s=1}^{n_{s}} \rho_{s}, \quad e_{v} = \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{\rho} e_{v_{s}} : \text{mixture vibrational energy per mass,} \\ p &= \sum_{s=1}^{n_{s}} \frac{\rho_{s}}{M_{s}} \bar{R}T, \quad \mathbf{e}_{v} = \{e_{v_{1}}, \dots, e_{v_{n_{s}}}\}^{T} : \text{vibrational energies per mass,} \\ Q_{t-v} : \text{translational-vibrational energy exchange,} \end{cases}$$

$$E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{\mathcal{V}_s} T + e_{v_s} + h_s^o \right)$$

	Equations	Spatial Accuracy	Spatial Results		Summary 00
Outling					

Introduction •

пленне

- Governing Equations
- Verification Techniques for Spatial Accuracy
 - Spatial Accuracy
 - Solutions
 - Error Norms
- Spatial-Discretization Verification Results
- Verification Techniques for Thermochemical Source Term
- Thermochemical-Source-Term Verification Results
- Summary •

Equations Spatial Accuracy 00000

Spatial Accuracy (Steady State)

Governing equations $\mathbf{r}(\mathbf{U}) = \mathbf{0}$

Discretized equations $\mathbf{r}_h(\mathbf{U}_h) = \mathbf{0}$

Discretization error is $\mathbf{e}_h = \mathbf{U}_h - \mathbf{U}_h$

Truncation error is $\boldsymbol{\tau}_h(\mathbf{V}) = \mathbf{r}_h(\mathbf{V}) - \mathbf{r}(\mathbf{V})$

Letting $\mathbf{V} = \mathbf{U}_h$ and adding $\mathbf{r}(\mathbf{U}) = \mathbf{0}$,

 $\boldsymbol{\tau}_h(\mathbf{U}_h) = \mathbf{r}_h(\mathbf{U}_h) - \mathbf{r}(\mathbf{U}_h) + \mathbf{r}(\mathbf{U}) = \mathbf{r}(\mathbf{U}) - \mathbf{r}(\mathbf{U}_h)$

When **r** is linearized w.r.t. **U**, $\mathbf{r}(\mathbf{e}_h) = -\boldsymbol{\tau}_h(\mathbf{U}_h)$

Spatial Accuracy (Steady State)

For p^{th} -order-accurate discretization, truncation error is

$$\boldsymbol{\tau}_h = \mathbf{r}(\mathbf{U}) - \mathbf{r}(\mathbf{U}_h) = \mathbf{C}_{\mathbf{r}} h^p + \mathcal{O}(h^{p+1})$$

h: relative characterization of cell sizes

- Between meshes, with respect to one dimension
- Individual cell sizes may be non-uniform functions of h
- Sufficiently fine meshes \rightarrow asymptotic region $(h^{p+1} \ll h^p)$

$$\mathbf{e}_h = \mathbf{U}_h - \mathbf{U} \approx \mathbf{C}_{\mathbf{U}} h^p$$

 $\mathbf{C_r}$ and $\mathbf{C_U}:$ function of derivative(s) of state vector \mathbf{U}

• Approximately constant between meshes in asymptotic region

Observed accuracy p computed using 2 meshes:

Observed accuracy p computed using 2 meshes:

Coarser mesh (h)

 $e_1 = Ch^p$

Observed accuracy p computed using 2 meshes:

Coarser mesh (h)Finer mesh (h/q)
(q-times as fine in each dimension) $e_1 = Ch^p$ $e_2 = C(h/q)^p$

Observed accuracy p computed using 2 meshes:

Coarser mesh (h)Finer mesh (h/q)
(q-times as fine in each dimension)

$$e_1 = Ch^p \qquad \qquad e_2 = C(h/q)^p$$

\boldsymbol{p} is computed by

$$p \approx \frac{\log |\mathbf{e}_1/\mathbf{e}_2|}{\log q} = \log_q |\mathbf{e}_1/\mathbf{e}_2|$$

		Spatial Accuracy		Source Term		Summary
000000	000000	000000	000000000000000000000000000000000000000	000	00000000	
Solutions	5					

Need solution to compute error

	Equations	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	5				

	Equations 000000	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	5				
Exact Se	olutions				

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\mathrm{Exact}}) = \mathbf{0}$

	$\begin{array}{c} \text{Equations} \\ \text{000000} \end{array}$	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	5				

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\mathrm{Exact}}) = \mathbf{0}$
- Limited cases

	Equations	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	5				

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\mathrm{Exact}}) = \mathbf{0}$
- Limited cases
- Span small subset of application space

	Equations	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000			Summary 00
Solutions						

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\mathrm{Exact}}) = \mathbf{0}$
- Limited cases
- Span small subset of application space

Manufactured Solutions

	Equations	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	5				

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\mathrm{Exact}}) = \mathbf{0}$
- Limited cases
- Span small subset of application space

Manufactured Solutions

- Do not satisfy original equations: $\mathbf{r}(\mathbf{U}_{\mathrm{MS}}) \neq \mathbf{0}$

	$\begin{array}{c} \text{Equations} \\ \text{000000} \end{array}$	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	5				

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\text{Exact}}) = \mathbf{0}$
- Limited cases
- Span small subset of application space

- Do not satisfy original equations: $\mathbf{r}(\mathbf{U}_{MS}) \neq \mathbf{0}$
- Require source term: $\mathbf{r}_h(\mathbf{U}_h) = \mathbf{r}(\mathbf{U}_{MS})$

	Equations	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	5				

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\text{Exact}}) = \mathbf{0}$
- Limited cases
- Span small subset of application space

- Do not satisfy original equations: $\mathbf{r}(\mathbf{U}_{MS}) \neq \mathbf{0}$
- Require source term: $\mathbf{r}_h(\mathbf{U}_h) = \mathbf{r}(\mathbf{U}_{MS})$
- Manufactured to exercise features of interest

	Equations	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	S				

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\text{Exact}}) = \mathbf{0}$
- Limited cases
- Span small subset of application space

- Do not satisfy original equations: $\mathbf{r}(\mathbf{U}_{MS}) \neq \mathbf{0}$
- Require source term: $\mathbf{r}_h(\mathbf{U}_h) = \mathbf{r}(\mathbf{U}_{MS})$
- Manufactured to exercise features of interest
- Should be smooth, continuously differentiable functions with generally nonzero derivatives and moderate variations

	Equations	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	S				

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\text{Exact}}) = \mathbf{0}$
- Limited cases
- Span small subset of application space

- Do not satisfy original equations: $\mathbf{r}(\mathbf{U}_{MS}) \neq \mathbf{0}$
- Require source term: $\mathbf{r}_h(\mathbf{U}_h) = \mathbf{r}(\mathbf{U}_{MS})$
- Manufactured to exercise features of interest
- Should be smooth, continuously differentiable functions with generally nonzero derivatives and moderate variations

	Equations	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Solutions	S				

- Negligible implementation effort: $\mathbf{r}(\mathbf{U}_{\mathrm{Exact}}) = \mathbf{0}$
- Limited cases
- Span small subset of application space

- Do not satisfy original equations: $\mathbf{r}(\mathbf{U}_{\mathrm{MS}}) \neq \mathbf{0}$
- Require source term: $\mathbf{r}_h(\mathbf{U}_h) = \mathbf{r}(\mathbf{U}_{MS})$
- Manufactured to exercise features of interest
- Should be smooth, continuously differentiable functions with generally nonzero derivatives and moderate variations

	Equations	Spatial Accuracy	Spatial Results 0000000000000000000	Source Term 000	Summary 00
Error No	orms				

	Equations	Spatial Accuracy	Spatial Results 000000000000000000000000000000000000		Summary 00
Error No	m rms				

• For cell-centered schemes, cell centers vary with mesh refinement

		Spatial Accuracy		Summary
		000000		
Error No	rms			

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed p is meaningless

		Spatial Accuracy				
000000	000000	000000	000000000000000000000000000000000000000	000	00000000	00
Frror No	rng					

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: $p = \log_q (\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2})$

Spatial Accuracy Spatial Results 00000

Error Norms

Computing p at a single location in domain has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: $p = \log_q (\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2})$

• L¹-norm:
$$\varepsilon_{\alpha}^{1} = \|\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})\|_{1} = \int_{\Omega} |\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})| d\Omega$$

Spatial Accuracy Spatial Results 00000

Error Norms

Computing p at a single location in domain has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: $p = \log_a (\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2})$

• L¹-norm:
$$\varepsilon_{\alpha}^{1} = \|\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})\|_{1} = \int_{\Omega} |\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})| d\Omega$$

– Average error

Error Norms

Computing p at a single location in domain has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: $p = \log_q (\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2})$

• L¹-norm:
$$\varepsilon_{\alpha}^{1} = \|\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})\|_{1} = \int_{\Omega} |\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})| d\Omega$$

- Average error
- Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)

Spatial Accuracy Spatial Results 00000

Error Norms

Computing p at a single location in domain has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: $p = \log_a (\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2})$

• L¹-norm:
$$\varepsilon_{\alpha}^{1} = \|\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})\|_{1} = \int_{\Omega} |\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})| d\Omega$$

- Average error
- Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)
- L^{∞} -norm: $\varepsilon_{\alpha}^{\infty} = \|\alpha_h(\mathbf{x}) \alpha(\mathbf{x})\|_{\infty} = \max_{\mathbf{x} \in \Omega} |\alpha_h(\mathbf{x}) \alpha(\mathbf{x})|$

Error Norms

Computing p at a single location in domain has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: $p = \log_q (\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2})$

- L¹-norm: $\varepsilon_{\alpha}^{1} = \|\alpha_{h}(\mathbf{x}) \alpha(\mathbf{x})\|_{1} = \int_{\Omega} |\alpha_{h}(\mathbf{x}) \alpha(\mathbf{x})| d\Omega$
 - Average error
 - Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)
- L^{∞} -norm: $\varepsilon_{\alpha}^{\infty} = \|\alpha_h(\mathbf{x}) \alpha(\mathbf{x})\|_{\infty} = \max_{\mathbf{x} \in \Omega} |\alpha_h(\mathbf{x}) \alpha(\mathbf{x})|$
 - Maximum error

Error Norms

Computing p at a single location in domain has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: $p = \log_q \left(\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2} \right)$

- L¹-norm: $\varepsilon_{\alpha}^{1} = \|\alpha_{h}(\mathbf{x}) \alpha(\mathbf{x})\|_{1} = \int_{\Omega} |\alpha_{h}(\mathbf{x}) \alpha(\mathbf{x})| d\Omega$
 - Average error
 - Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)
- L^{∞} -norm: $\varepsilon_{\alpha}^{\infty} = \|\alpha_h(\mathbf{x}) \alpha(\mathbf{x})\|_{\infty} = \max_{\mathbf{x} \in \Omega} |\alpha_h(\mathbf{x}) \alpha(\mathbf{x})|$
 - Maximum error
 - Catches localized deviations (expected and **unexpected**)

Spatial Accuracy Spatial Results 00000

Error Norms

Computing p at a single location in domain has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: $p = \log_a (\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2})$

• L¹-norm:
$$\varepsilon_{\alpha}^{1} = \|\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})\|_{1} = \int_{\Omega} |\alpha_{h}(\mathbf{x}) - \alpha(\mathbf{x})| d\Omega$$

- Average error
- Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)
- L^{∞} -norm: $\varepsilon_{\alpha}^{\infty} = \|\alpha_h(\mathbf{x}) \alpha(\mathbf{x})\|_{\infty} = \max_{\mathbf{x} \in \Omega} |\alpha_h(\mathbf{x}) \alpha(\mathbf{x})|$
 - Maximum error
 - Catches localized deviations (expected and **unexpected**)
- Without discontinuities, both norms should yield same p

		Spatial Accuracy	Spatial Results			
000000	000000	000000	000000000000000000000000000000000000000	000	00000000	
Outling						

- Introduction •
- Governing Equations
- Verification Techniques for Spatial Accuracy
- Spatial-Discretization Verification Results - Single-Species Inviscid Flow in Thermochemical Equilibrium – Five-Species Inviscid Flow in Chemical Nonequilibrium
- Verification Techniques for Thermochemical Source Term
- Thermochemical-Source-Term Verification Results

Spatial Results

1D Supersonic Flow using a Manufactured Solution

- One-dimensional domain: $x \in [0, 1]$ m
- Boundary conditions:
 - Supersonic inflow (x = 0 m)
 - Supersonic outflow (x = 1 m)
- 5 uniform meshes: 50, 100, 200, 400, 800 elements
- Solution consists of small, smooth perturbations to uniform flow:

$$\begin{split} \rho(x) &= \bar{\rho} \left[1 - \epsilon \sin(\pi x) \right], \\ u(x) &= \bar{u} \left[1 - \epsilon \sin(\pi x) \right], \\ T(x) &= \bar{T} \left[1 + \epsilon \sin(\pi x) \right], \end{split}$$

 $\bar{\rho} = 1 \text{ kg/m}^3$, $\bar{T} = 300 \text{ K}$, $\bar{M} = 2.5$, $\epsilon = 0.05$

	First-order accurate				nd-order acc	urate	
	Original boundary conditions			Original boundary conditions Corrected boundary co			conditions
Mesh	ρ	u	Т	ρ	u	Т	
1 - 2	1.0008	1.0008	1.0008	2.0313	2.0362	2.0351	
2 - 3	1.0002	1.0002	1.0002	2.0157	2.0184	2.0178	
3-4	1.0001	1.0001	1.0000	2.0079	2.0093	2.0090	
4-5	1.0000	1.0000	1.0000	2.0040	2.0047	2.0045	

Observed accuracy p using L^{∞} -norms of the error

- Two-dimensional domain: $(x,y) \in [0,\,1] \ \mathbf{m} \times [0,\,1] \ \mathbf{m}$
- Boundary conditions:
 - Supersonic inflow (x = 0 m)
 - Supersonic outflow (x = 1 m)
 - Slip wall (tangent flow) (y = 0 m & y = 1 m)
- 5 nonuniform meshes: $25 \times 25 \rightarrow 400 \times 400$
- Solution consists of small, smooth perturbations to uniform flow:

$$\begin{split} \rho\left(x,y\right) &= \bar{\rho}\left[1-\epsilon\sin\left(\frac{5}{4}\pi x\right)\left(\sin\left(-\pi y\right)+\cos\left(-\pi y\right)\right)\right],\\ u\left(x,y\right) &= \bar{u}\left[1+\epsilon\sin\left(\frac{1}{4}\pi x\right)\left(\sin\left(-\pi y\right)+\cos\left(-\pi y\right)\right)\right],\\ v\left(x,y\right) &= \bar{v}\left[-\epsilon\sin\left(\frac{5}{4}\pi x\right)\left(\sin\left(-\pi y\right)-\right)\right)\right],\\ T(x,y) &= \bar{T}\left[1+\epsilon\sin\left(\frac{5}{4}\pi x\right)\left(\sin\left(-\pi y\right)+\cos\left(-\pi y\right)\right)\right], \end{split}$$

 $\bar{\rho}=1~{\rm kg/m^3},\,\bar{T}=300$ K, $\bar{M}=2.5,\,\epsilon=0.05$

➤ x

 $\rightarrow x$

Sandia National Laboratories

0.95

2D Supersonic Flow using a Manufactured Solution

	First-order accurate				Second-order accurate			
	Original boundary conditions				Corrected boundary conditions			
Mesh	ρ	u	v	Т	ρ	u	v	Т
1-2	0.9420	0.9409	0.9721	0.9628	2.0623	1.9188	1.8174	1.8598
2 - 3	0.9850	0.9902	0.9910	0.9874	2.1304	1.9450	1.9221	1.9280
3-4	0.9960	1.0002	0.9924	0.9952	2.0902	1.9603	1.9671	1.9586
4-5	0.9989	1.0009	0.9959	0.9984	2.0128	1.9823	1.9860	1.9809

Observed accuracy p using $L^\infty\text{-norms}$ of the error

2D Supersonic Flow using an Exact Solution

- Two-dimensional domain: $(r,\theta) \in [1,\,1.384] \times [0,\,90]^\circ$
- Boundary conditions:
 - Supersonic inflow ($\theta = 90^{\circ}$)
 - Supersonic outflow ($\theta = 0^{\circ}$)
 - Slip wall (tangent flow) (r = 1 & r = 1.384)
- 6 meshes: $32 \times 8 \rightarrow 1024 \times 256$
- Solution is steady isentropic vortex:

$$\begin{split} \rho(r) &= \rho_i \left[1 + \frac{\gamma - 1}{2} M_i^2 \left(1 - \left(\frac{r_i}{r} \right)^2 \right) \right]^{\frac{1}{\gamma - 1}},\\ u_r(r) &= 0,\\ u_\theta(r) &= -a_i M_i \frac{r_i}{r},\\ T(r) &= T_i \left[1 + \frac{\gamma - 1}{2} M_i^2 \left(1 - \left(\frac{r_i}{r} \right)^2 \right) \right], \end{split}$$

 $\rho_i = 1, a_i = 1, M_i = 2.25, T_i = 1/(\gamma R)$

Freno et al. Code Verification for Flows in Thermochemical Nonequilibrium 28 / 5

Fin Sandia National Laboratories

Spatial Results

2D Supersonic Flow using an Exact Solution

Observed accuracy p using L^{∞} -norms of the error

1.9879

1.9940

2.0054

2.0029

2.0044

2.0025

1.9972

1.9986

4 - 5

5-6

- Three-dimensional domain: $(x, y, z) \in [0, 1] \text{ m} \times [0, 1] \text{ m} \times [0, 1] \text{ m}$
- Boundary conditions:
 - Supersonic inflow (x = 0 m)
 - Supersonic outflow (x = 1 m)
 - Slip wall (tangent flow) (y = 0 m, y = 1 m, z = 0 m, z = 1 m)
- 5 nonuniform meshes: $25 \times 25 \times 25 \rightarrow 400 \times 400 \times 400$
- Solution consists of small, smooth perturbations to uniform flow: $\rho(x, y, z) = \bar{\rho} \left[1 - \epsilon \sin\left(\frac{5}{4}\pi x\right) \left(\sin(\pi y) + \cos(\pi y) \right) \left(\sin(\pi z) + \cos(\pi z) \right) \right],$ $u(x, y, z) = \bar{u} \left[1 + \epsilon \sin\left(\frac{1}{4}\pi x\right) \left(\sin(\pi y) + \cos(\pi y)\right) \left(\sin(\pi z) + \cos(\pi z)\right) \right],$ $\left(\sin(\pi z) + \cos(\pi z)\right)$ $v(x, y, z) = \bar{v} \left[-\epsilon \sin\left(\frac{5}{4}\pi x\right) (\sin(\pi y)) \right]$ $w(x, y, z) = \bar{w} \left[-\epsilon \sin\left(\frac{5}{4}\pi x\right) \left(\sin(\pi y) + \cos(\pi y)\right) \left(\sin(\pi z)\right) \right]$ $T(x, y, z) = \overline{T} \left[1 + \epsilon \sin\left(\frac{5}{4}\pi x\right) \left(\sin(\pi y) + \cos(\pi y)\right) \left(\sin(\pi z) + \cos(\pi z)\right) \right],$ $\bar{\rho} = 1 \text{ kg/m}^3$, $\bar{T} = 300 \text{ K}$, $\bar{M} = 2.5$, $\epsilon = 0.05$

3D Supersonic Flow using a Manufactured Solution

Mesh	ρ	u	v	w	T
1 - 2	2.0849	1.8731	1.9841	1.7039	1.9404
2 - 3	2.1406	1.9923	1.9295	1.8621	1.9774
3-4	2.0990	2.0115	1.9623	1.9349	1.9922
4 - 5	2.0585	2.0100	1.9820	1.9571	1.9964

Observed accuracy p using L^{∞} -norms of the error

Spatial Results

Five-Species Air Model

5 species: N_2 , O_2 , NO, N, and O

17 reactions:

r	Reaction		Type of Reaction
1–5	$N_2 + \mathcal{M} \leftrightarrows N + N + \mathcal{M},$	$\mathcal{M} = \{\mathrm{N}_2,\mathrm{O}_2,\mathrm{NO},\mathrm{N},\mathrm{O}\}$	Dissociation
6 - 10	$O_2 + \mathcal{M} \leftrightarrows O + O + \mathcal{M},$	$\mathcal{M} = \{N_2, O_2, NO, N, O\}$	Dissociation
11 - 15	$\mathrm{NO} + \mathcal{M} \leftrightarrows \mathrm{N} + \mathrm{O} + \mathcal{M},$	$\mathcal{M} = \{N_2, O_2, NO, N, O\}$	Dissociation
16	$N_2 + O \rightleftharpoons N + NO$		Exchange
17	$NO + O \rightleftharpoons N + O_2$		Exchange

Five-Species Inviscid Flow in Chemical Nonequilibrium

- Two-dimensional domain: $(x,y) \in [0,\,1]$ m $\times [0,\,1]$ m
- Same boundary conditions
- 7 nonuniform meshes: $25\times25\rightarrow1600\times1600$
- Solution consists of small, smooth perturbations to uniform flow

$$\begin{split} \rho_{\mathrm{N}_{2}}\left(x,y\right) &= \bar{\rho}_{\mathrm{N}_{2}}\left[1-\epsilon\sin\left(\frac{5}{4}\pi x\right)\left(\sin\left(-\pi y\right)+\cos\left(-\pi y\right)\right)\right],\\ \rho_{\mathrm{O}_{2}}\left(x,y\right) &= \bar{\rho}_{\mathrm{O}_{2}}\left[1+\epsilon\sin\left(\frac{3}{4}\pi x\right)\left(\sin\left(-\pi y\right)+\cos\left(-\pi y\right)\right)\right],\\ \rho_{\mathrm{NO}}(x,y) &= \bar{\rho}_{\mathrm{NO}}\left[1+\epsilon\sin\left(-\pi x\right)\left(\sin\left(-\pi y\right)\right)\right)\right],\\ \rho_{\mathrm{N}}\left(x,y\right) &= \bar{\rho}_{\mathrm{N}}\left[1+\epsilon\sin\left(-\pi x\right)\left(\cos\left(\frac{1}{4}\pi y\right)\right)\right],\\ \rho_{\mathrm{O}}\left(x,y\right) &= \bar{\rho}_{\mathrm{O}}\left[1+\epsilon\sin\left(-\pi x\right)\left(\sin\left(-\pi y\right)+\cos\left(\frac{1}{4}\pi y\right)\right)\right],\\ u\left(x,y\right) &= \bar{u}\left[1+\epsilon\sin\left(\frac{1}{4}\pi x\right)\left(\sin\left(-\pi y\right)+\cos\left(-\pi y\right)\right)\right],\\ v\left(x,y\right) &= \bar{v}\left[-\epsilon\sin\left(\frac{5}{4}\pi x\right)\left(\sin\left(-\pi y\right)+\cos\left(-\pi y\right)\right)\right],\\ T\left(x,y\right) &= \bar{T}\left[1+\epsilon\sin\left(\frac{5}{4}\pi x\right)\left(\sin\left(-\pi y\right)+\cos\left(-\pi y\right)\right)\right],\\ T_{v}\left(x,y\right) &= \bar{T}_{v}\left[1+\epsilon\sin\left(\frac{3}{4}\pi x\right)\left(\sin\left(-\frac{5}{4}\pi y\right)+\cos\left(\frac{3}{4}\pi y\right)\right)\right] \end{split}$$

Freno et al. Code Verification for Flows in Thermochemical Nonequilibrium 34

Sandia National Laboratories

an a	• דיו	· (T) 1				
			000000000000000000000000000000000000000			
Introduction	Equations	Spatial Accuracy	Spatial Results	Source Term	Source Results	Summary

2D Supersonic Flow in Thermal Equilibrium using a Manufactured Solution

Variable	Value	Units
$\bar{ ho}_{\mathrm{N}_2}$	0.77	kg/m^3
$\overline{\rho}_{\rm NO}^2$ $\overline{\rho}_{\rm NO}$	$0.20 \\ 0.01$	kg/m^3
$\bar{\rho}_{\rm N}$ $\bar{\rho}_{\rm O}$	$0.01 \\ 0.01$	kg/m ³ kg/m ³
\bar{T}	3500	K
$M = \epsilon$	$2.5 \\ 0.05$	

Mesh	$ ho_{ m N_2}$	$ ho_{\mathrm{O}_2}$	$ ho_{ m NO}$	$ ho_{ m N}$	$ ho_{ m O}$	u	v	T
1 - 2	2.0608	2.1382	2.0698	2.0644	2.1885	1.8425	1.8289	1.7351
2 - 3	2.1161	2.1219	2.1127	2.1072	2.1697	1.8875	1.9220	1.7923
3 - 4	2.0798	2.0813	1.8555	2.0754	2.0971	1.9200	1.9686	1.8525
4 - 5	2.0456	2.0458	1.8917	2.0428	2.0806	1.9522	1.9871	1.9079
5-6	2.0243	2.0243	1.9427	2.0228	2.0529	1.9735	1.9939	1.9485
6-7	2.0125	2.0125	1.9790	2.0118	2.0318	1.9865	1.9969	1.9737

2D MMS, $n_s = 5, T_v = T, \dot{\mathbf{w}} \neq \mathbf{0}$: Observed accuracy p using L^{∞} -norms of the error

Introduction 000000	Equations 000000	Spatial Accuracy 000000	Spatial Results	Source Term 000	Source Results	Summary 00
	· 171	· mi i	NT 111 1	·	C , 1	a 1

2D Hypersonic Flow in Thermal Nonequilibrium using a Manufactured Solution

Variable	Value	Units
$\bar{ ho}_{ m N_2}$	0.0077	$\rm kg/m^3$
$\bar{ ho}_{\mathrm{O}_2}$	0.0020	$\rm kg/m^3$
$\bar{\rho}_{\rm NO}$	0.0001	$\rm kg/m^3$
$\bar{\rho}_{\rm N}$	0.0001	$\rm kg/m^3$
$\bar{\rho}_{\rm O}$	0.0001	kg/m^3
\overline{T}	5000	Κ
\bar{T}_v	1000	Κ
\overline{M}	8	
ϵ	0.05	

Mesh	$ ho_{ m N_2}$	$ ho_{\mathrm{O}_2}$	$ ho_{ m NO}$	$ ho_{ m N}$	$ ho_{ m O}$	u	v	T	T_v
1 - 2	1.5659	1.6370	1.6555	1.6046	1.5869	1.7742	1.7337	1.7814	1.5545
2 - 3	1.9067	1.6944	1.6986	1.7598	1.8819	1.8916	1.8701	1.8768	1.9150
3-4	1.9868	2.0475	2.0698	2.0477	2.0110	1.9488	1.9357	1.9349	2.0082
4-5	2.0074	1.9941	2.0138	1.9936	2.0089	1.9752	1.9684	1.9672	2.0168
5-6	2.0062	1.9939	2.0004	1.9935	2.0061	1.9879	1.9843	1.9836	2.0111
6-7	2.0037	1.9965	1.9994	1.9962	1.9955	1.9940	1.9922	1.9918	2.0063

2D MMS, $n_s = 5, T_v \neq T, \dot{\mathbf{w}} \neq \mathbf{0}$: Observed accuracy p using L^{∞} -norms of the error

	Equations 000000	Spatial Accuracy 000000	Spatial Results 000000000000000000	Source Term $\bullet \circ \circ$	Summary 00
Outline					

- Introduction
- Governing Equations
- Verification Techniques for Spatial Accuracy
- Spatial-Discretization Verification Results
- Verification Techniques for Thermochemical Source Term
 - Techniques
 - Distinctive Features
- Thermochemical-Source-Term Verification Results
- Summary

Introduction Equations Spatial Accuracy Spatial Results Source Term Source Results Summary

• $\mathbf{S}(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; \mathbf{0}; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix}$ is algebraic

IntroductionEquationsSpatial AccuracySpatial ResultsSource TermSource ResultsSource ResultsvoccocovoccocovoccocovoccocovoccocovoccocovoccocovoccocovoccocoVerificationTechniques forThermochemicalSourceTerm

• $\mathbf{S}(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; \mathbf{0}; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix}$ is algebraic

 $- \mathbf{S}(\mathbf{U})$ computed by same code for both sides of $\mathbf{r}_h(\mathbf{U}_h) = \mathbf{r}(\mathbf{U}_{MS})$

- $\mathbf{S}(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; \mathbf{0}; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix}$ is algebraic
 - $-\mathbf{S}(\mathbf{U})$ computed by same code for both sides of $\mathbf{r}_{h}(\mathbf{U}_{h}) = \mathbf{r}(\mathbf{U}_{MS})$
 - Manufactured solutions will **not** detect implementation errors

Introduction Equations Spatial Accuracy Spatial Results Source Term Source Results Summary OCOCOCO Social Source Term Source Term

- $\mathbf{S}(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; \mathbf{0}; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix}$ is algebraic
 - $-\mathbf{S}(\mathbf{U})$ computed by same code for both sides of $\mathbf{r}_{h}(\mathbf{U}_{h}) = \mathbf{r}(\mathbf{U}_{MS})$
 - $-\,$ Manufactured solutions will ${\bf not}$ detect implementation errors
- Compute $Q_{t-v}(\boldsymbol{\rho}, T, T_v)$, $\mathbf{e}_v(\boldsymbol{\rho}, T, T_v)$, and $\dot{\mathbf{w}}(\boldsymbol{\rho}, T, T_v)$

Introduction Equations Spatial Accuracy Spatial Results Source Term Source Results Summary OCOCOCO Source Term Source Term Source Term

- $\mathbf{S}(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; \mathbf{0}; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix}$ is algebraic
 - $-\mathbf{S}(\mathbf{U})$ computed by same code for both sides of $\mathbf{r}_{h}(\mathbf{U}_{h}) = \mathbf{r}(\mathbf{U}_{MS})$
 - $-\,$ Manufactured solutions will ${\bf not}$ detect implementation errors
- Compute $Q_{t-v}(\boldsymbol{\rho}, T, T_v)$, $\mathbf{e}_v(\boldsymbol{\rho}, T, T_v)$, and $\dot{\mathbf{w}}(\boldsymbol{\rho}, T, T_v)$
 - For single-cell mesh when initialized to $\{\rho, T, T_v\}$ with no velocity

Introduction Equations Spatial Accuracy Spatial Results Source Term Source Results Summary OCOCOCO Source Term Source Term Source Term Source Term

- $\mathbf{S}(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; \mathbf{0}; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix}$ is algebraic
 - $-\mathbf{S}(\mathbf{U})$ computed by same code for both sides of $\mathbf{r}_{h}(\mathbf{U}_{h}) = \mathbf{r}(\mathbf{U}_{MS})$
 - $-\,$ Manufactured solutions will ${\bf not}$ detect implementation errors
- Compute $Q_{t-v}(\boldsymbol{\rho},T,T_v)$, $\mathbf{e}_v(\boldsymbol{\rho},T,T_v)$, and $\dot{\mathbf{w}}(\boldsymbol{\rho},T,T_v)$
 - For single-cell mesh when initialized to $\{\rho, T, T_v\}$ with no velocity
 - For many values of $\{ \boldsymbol{\rho}, T, T_v \}$

Source Term Verification Techniques for Thermochemical Source Term

- $\mathbf{S}(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; \mathbf{0}; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix}$ is algebraic
 - $-\mathbf{S}(\mathbf{U})$ computed by same code for both sides of $\mathbf{r}_h(\mathbf{U}_h) = \mathbf{r}(\mathbf{U}_{MS})$
 - Manufactured solutions will **not** detect implementation errors
- Compute $Q_{t-v}(\boldsymbol{\rho}, T, T_v)$, $\mathbf{e}_v(\boldsymbol{\rho}, T, T_v)$, and $\dot{\mathbf{w}}(\boldsymbol{\rho}, T, T_v)$
 - For single-cell mesh when initialized to $\{\rho, T, T_v\}$ with no velocity
 - For many values of $\{\boldsymbol{\rho}, T, T_n\}$
 - Compare with independently developed code

Source Term Verification Techniques for Thermochemical Source Term

- $\mathbf{S}(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; \mathbf{0}; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix}$ is algebraic
 - $-\mathbf{S}(\mathbf{U})$ computed by same code for both sides of $\mathbf{r}_h(\mathbf{U}_h) = \mathbf{r}(\mathbf{U}_{MS})$
 - Manufactured solutions will **not** detect implementation errors
- Compute $Q_{t-v}(\boldsymbol{\rho}, T, T_v)$, $\mathbf{e}_v(\boldsymbol{\rho}, T, T_v)$, and $\dot{\mathbf{w}}(\boldsymbol{\rho}, T, T_v)$
 - For single-cell mesh when initialized to $\{\rho, T, T_v\}$ with no velocity
 - For many values of $\{\boldsymbol{\rho}, T, T_n\}$
 - Compare with independently developed code
 - Perform convergence studies on distribution and difference

- $\mathbf{S}(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; \mathbf{0}; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix}$ is algebraic
 - $-\mathbf{S}(\mathbf{U})$ computed by same code for both sides of $\mathbf{r}_{h}(\mathbf{U}_{h}) = \mathbf{r}(\mathbf{U}_{MS})$
 - $-\,$ Manufactured solutions will ${\bf not}$ detect implementation errors
- Compute $Q_{t-v}(\boldsymbol{\rho},T,T_v)$, $\mathbf{e}_v(\boldsymbol{\rho},T,T_v)$, and $\dot{\mathbf{w}}(\boldsymbol{\rho},T,T_v)$
 - For single-cell mesh when initialized to $\{\rho, T, T_v\}$ with no velocity
 - For many values of $\{\boldsymbol{\rho}, T, T_v\}$
 - Compare with independently developed code
 - Perform convergence studies on distribution and difference
- For each query, compute symmetric relative difference

$$\delta_{\beta} = 2 \frac{|\beta_{\text{SPARC}} - \beta'|}{|\beta_{\text{SPARC}}| + |\beta'|}$$

Distinctive Features

This is **not** typical low-rigor code-to-code comparison

Distinctive Features

Distinctive Features

This is **not** typical low-rigor code-to-code comparison Distinctive and rigorous features:

• Code is independently developed **internally**

Distinctive Features

- Code is independently developed **internally**
 - Uses **same** models and material properties expected from **SPARC**

Distinctive Features

- Code is independently developed **internally**
 - Uses **same** models and material properties expected from **SPARC**
 - Models and properties taken **directly** from the original references

Distinctive Features

- Code is independently developed **internally**
 - Uses \mathbf{same} models and material properties expected from \mathtt{SPARC}
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial

Distinctive Features

- Code is independently developed **internally**
 - Uses \mathbf{same} models and material properties expected from \mathtt{SPARC}
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement

Distinctive Features

- Code is independently developed **internally**
 - Uses \mathbf{same} models and material properties expected from \mathtt{SPARC}
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output

Distinctive Features

- Code is independently developed **internally**
 - Uses same models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output
- Relative differences required to be **low** near machine precision

Distinctive Features

- Code is independently developed **internally**
 - Uses same models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output
- Relative differences required to be **low** near machine precision
 - Models and material properties are the same

Distinctive Features

- Code is independently developed **internally**
 - Uses same models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output
- Relative differences required to be **low** near machine precision
 - Models and material properties are the same
 - Typically code-to-code comparison accepts a few percent

Distinctive Features

- Code is independently developed **internally**
 - Uses \mathbf{same} models and material properties expected from \mathtt{SPARC}
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output
- Relative differences required to be **low** near machine precision
 - Models and material properties are the same
 - Typically code-to-code comparison accepts a few percent
- Wide condition coverage

Distinctive Features

- Code is independently developed **internally**
 - Uses same models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output
- Relative differences required to be **low** near machine precision
 - Models and material properties are the same
 - Typically code-to-code comparison accepts a few percent
- Wide condition coverage
 - Comparison is queried for 1000s of conditions, spans extreme ranges

Distinctive Features

- Code is independently developed **internally**
 - Uses same models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output
- Relative differences required to be **low** near machine precision
 - Models and material properties are the same
 - Typically code-to-code comparison accepts a few percent
- Wide condition coverage
 - Comparison is queried for 1000s of conditions, spans extreme ranges
 - Code-to-code comparison typically considers single or few conditions

	Equations	Spatial Accuracy 000000	Spatial Results 000000000000000000000000000000000000	Source Results \bullet	Summary 00
Outline					

- Introduction
- Governing Equations
- Verification Techniques for Spatial Accuracy
- Spatial-Discretization Verification Results
- Verification Techniques for Thermochemical Source Term
- Thermochemical-Source-Term Verification Results
 - Samples of $Q_{t-v}(\boldsymbol{\rho},T,T_v)$, $\mathbf{e}_v(\boldsymbol{\rho},T,T_v)$, and $\dot{\mathbf{w}}(\boldsymbol{\rho},T,T_v)$
 - Nonzero Relative Differences in Q_{t-v} and \mathbf{e}_v
 - Nonzero Relative Differences in $\dot{\mathbf{w}}$
 - Convergence History of Relative Differences

• Summary

variable	minimum	mann	Omos	opacing
$ ho_{ m N_2}$	10^{-6}	10^{1}	$\rm kg/m^3$	Logarithmic
$ ho_{\mathrm{O}_2}$	10^{-6}	10^{1}	$\rm kg/m^3$	Logarithmic
$\rho_{\rm NO}$	10^{-6}	10^{1}	$\mathrm{kg/m^{3}}$	Logarithmic
$ ho_{ m N}$	10^{-6}	10^{1}	$\rm kg/m^3$	Logarithmic
$\rho_{\rm O}$	10^{-6}	10^{1}	$\mathrm{kg/m^{3}}$	Logarithmic
T	100	15,000	Κ	Linear
T_v	100	15,000	Κ	Linear

Ranges and spacings for Latin hypercube samples

Freno et al. Code Verification for Flows in Thermochemical Nonequilibrium 41

Freno et al. Code Verification for Flows in Thermochemical Nonequilibrium 4

Sandia National Laboratories

• Relative differences are **not** near machine precision

- Relative differences are **not** near machine precision
- $\delta_{Q_{t-n}} > 10\%$ in 8.7% of simulations

- Relative differences are **not** near machine precision
- $\delta_{Q_{t-v}} > 10\%$ in 8.7% of simulations
- $\delta_{Q_{t-v}} > 1\%$ in 29% of simulations

- Relative differences are **not** near machine precision
- $\delta_{Q_{t-v}} > 10\%$ in 8.7% of simulations
- $\delta_{Q_{t-v}} > 1\%$ in 29% of simulations
- $\delta_{\mathbf{e}_v} > 100\%$ for some simulations

Two causes:

Two causes:

- Incorrect lookup table values for vibrational constants
 - For N_2 and O_2 when the colliding species is NO
 - Introduced error in Q_{t-v} for all simulations
 - For high-enthalpy (20 MJ/kg), hypersonic, laminar double-cone flow, 1.4% change in pressure and 2.7% change in heat flux

Two causes:

- **Incorrect lookup table values** for vibrational constants
 - For N₂ and O₂ when the colliding species is NO
 - Introduced error in Q_{t-v} for all simulations
 - For high-enthalpy (20 MJ/kg), hypersonic, laminar double-cone flow, 1.4% change in pressure and 2.7% change in heat flux
- Loose convergence criteria for computing T_v from ρe_v
 - Unsuitable for low values of T_v
 - Introduced errors in Q_{t-v} , \mathbf{e}_v , and $\dot{\mathbf{w}}$ for a few simulations
 - For converged, steady problem, original criteria are acceptable

Source Results 00000000 Corrected Nonzero Relative Differences in Q_{t-v} and \mathbf{e}_{v}

Original lookup table and convergence criteria

Original lookup table and convergence criteria

Freno et al. Code Verification for Flows in Thermochemical Nonequilibrium 45

• Relative differences are consistent with our expectations

- Relative differences are consistent with our expectations
- $\delta_{Q_{t-v}} < 10^{-10}$ and $\delta_{\mathbf{e}_v} < 10^{-14}$ in all simulations

- Relative differences are consistent with our expectations
- $\delta_{O_{t-n}} < 10^{-10}$ and $\delta_{\mathbf{e}_n} < 10^{-14}$ in all simulations
- $\delta_{Q_{t-v}} > 10^{-12}$ in 48/131,072 simulations

- Relative differences are consistent with our expectations
- $\delta_{O_{t-n}} < 10^{-10}$ and $\delta_{\mathbf{e}_n} < 10^{-14}$ in all simulations
- $\delta_{Q_{t-v}} > 10^{-12}$ in 48/131,072 simulations

-T and T_v have relative difference less than 0.2%

- Relative differences are consistent with our expectations
- $\delta_{Q_{t-n}} < 10^{-10}$ and $\delta_{\mathbf{e}_n} < 10^{-14}$ in all simulations
- $\delta_{Q_{t-v}} > 10^{-12}$ in 48/131,072 simulations
 - -T and T_v have relative difference less than 0.2%
 - In numerator of $\frac{e_{v_{s,m}}(T)-e_{v_{s,m}}(T_v)}{\langle \tau_{s,m} \rangle}$, $e_{v_{s,m}}(T)$ and $e_{v_{s,m}}(T_v)$ share many leading digits

Code Verification for Flows in Thermochemical Nonequilibrium 45 / 51 👘 Sandia National Laboratories

Corrected Nonzero Relative Differences in Q_{t-v} and \mathbf{e}_v

- Relative differences are consistent with our expectations
- $\delta_{Q_{t-v}} < 10^{-10}$ and $\delta_{\mathbf{e}_v} < 10^{-14}$ in all simulations
- $\delta_{Q_{t-v}} > 10^{-12}$ in 48/131,072 simulations
 - T and T_v have relative difference less than 0.2%
 - In numerator of $\frac{e_{v_{s,m}}(T)-e_{v_{s,m}}(T_v)}{\langle \tau_{s,m} \rangle}$, $e_{v_{s,m}}(T)$ and $e_{v_{s,m}}(T_v)$ share many leading digits
 - Precision lost when computing difference

Freno et al. Code Verification for Flows in Thermochemical Nonequilibrium 45 / 51 🕅 Sandia National Laboratories

Original convergence criteria

Tighter convergence criteria

Original convergence criteria

Tighter convergence criteria

• Relative differences are consistent with our expectations

Original convergence criteria

Tighter convergence criteria

- Relative differences are consistent with our expectations
- $\delta_{\mathbf{w}} < 10^{-9}$ in all simulations

Original convergence criteria

Tighter convergence criteria

- Relative differences are consistent with our expectations
- $\delta_{\dot{\mathbf{w}}} < 10^{-9}$ in all simulations
- $\delta_{\dot{\mathbf{w}}} > 10^{-12}$ for 109/655,360 computed values (5 species, 131,072 simulations)

Original convergence criteria

Tighter convergence criteria

- Relative differences are consistent with our expectations
- $\delta_{\dot{\mathbf{w}}} < 10^{-9}$ in all simulations
- $\delta_{\dot{\mathbf{w}}} > 10^{-12}$ for 109/655,360 computed values (5 species, 131,072 simulations)

– Due to precision loss that can occur from subtraction in $\dot{w}_s = M_s \sum_{r=1}^{n_r} (\beta_{s,r} - \alpha_{s,r}) (R_{f_r} - R_{b_r})$

Freno et al. Code Verification for Flows in Thermochemical Nonequilibrium 47

Sandia National Laboratories

	Equations	Spatial Accuracy 000000	Spatial Results 0000000000000000000	Source Term 000	$\underset{\bullet \circ}{\text{Summary}}$
Outling					

- Introduction
- Governing Equations
- Verification Techniques for Spatial Accuracy
- Spatial-Discretization Verification Results
- Verification Techniques for Thermochemical Source Term
- Thermochemical-Source-Term Verification Results
- Summary
 - Code-Verification Techniques

Summarv 00

Code-Verification Techniques

- Manufactured and exact solutions
 - Effective approaches for verifying spatial accuracy detected multiple issues
 - Rigorous norms improve effectiveness L^{∞} -norm of error more useful
 - Insufficient for algebraic source terms both evaluations the same
- Thermochemical-source-term approach
 - Effective approach for verifying implementation detected multiple issues
 - Convergence study important to determine whether samples sufficiently span ranges

Introduction Equations Spatial Accuracy Spatial Results Source Term Source Result

Additional Information

B. Freno, B. Carnes, V. Weirs Code-Verification techniques for hypersonic reacting flows in thermochemical nonequilibrium Journal of Computational Physics (2021) arXiv:2007.14376

Sandia National Laboratories is a multimission laboratory managed and U.S. Department of Energy's National Nuclear Security Administration

This presentation describes objective technical results and analysis. Any

