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Hypersonic Flow

Hypersonic flows and underlying aerothermochemical phenomena
e Important in design & analysis of vehicles exiting/reentering atmosphere

e High flow velocities and stagnation enthalpies
Induce chemical reactions

— Excite thermal energy modes

e Aerodynamic and thermochemical models require full coupling
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Sandia Parallel Aerodynamics and Reentry Code (SPARC)

Sandia Parallel Aerodynamics and Reentry Code (SPARC)
e Under development at Sandia National Laboratories

e Compressible computational fluids dynamics code

Models transonic and hypersonic reacting turbulent flows

¢ Solves transient heat equation and equations associated with
decomposing and non-decomposing ablators

¢ One- and two-way couplings between fluid-dynamics and ablation solvers
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Verification and Validation

Credibility of computational physics codes requires verification and validation

e Validation assesses how well models represent physical phenomena
— Computational results are compared with experimental results

— Assess suitability of models, model error, and bounds of validity

¢ Verification assesses accuracy of numerical solutions against expectations

— Solution verification estimates numerical error for particular solution

Code verification verifies correctness of numerical-method implementation
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Code Verification

Code verification is focus of this work

e Governing equations are numerically discretized
— Discretization error is introduced in solution

e Seek to verify discretization error decreases with refinement of discretization
— Should decrease at an expected rate

e Use manufactured and exact solutions to compute error
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Code Verification

Code verification demonstrated in many computational physics disciplines

¢ Fluid dynamics ¢ Multiphase flows ¢ Fluid—structure interaction
¢ Solid mechanics ¢ Electrodynamics e Radiation hydrodynamics
e Heat transfer e Electromagnetism

Code-verification techniques for hypersonic flows have been presented

¢ Single-species perfect gas

e Multi-species gas in thermal equilibrium
We present code-verification techniques for hypersonic reacting flows in
thermochemical nonequilibrium and demonstrate effectiveness

e Spatial discretization

e Thermochemical source term
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Outline

¢ Governing Equations
— Conserved Quantities
— Vibrational Energy
— Translational-Vibrational Energy Exchange
— Chemical Kinetics
— Scope of Code Verification
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Equations
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Governing Equations: ng Species in Vibrational Nonequilibrium

Conservation of mass, momentum, and energy:

%+V.FC(U):—V~FP(U)+V~F(1(U)+S(U),

where
p va 0 —J
T
_ ) pv | pvv | I _ T )
U= 0B F.(U) = pENT | F,(U) = | F;(U) = (rv—q-aqu- JTh)j
pe, pev’ o” (—aq, —I%,)"
p=A{p1,..., /7,,~}TA w = {uwr,..., u',*,,.}T: mass production rates per volume,
W ns o
0 p= Z Pss ey = Ls("l.‘: mixture vibrational energy per mass,
S(U) = ; = =
Qv + efv'v b= - Ps RT e, = {(’,,‘1 yeens Cup, }T : vibrational energies per mass,
= M, Qi—y : translational-vibrational energy exchange,
2
o v

S5 ; ’7) (e, T + eo, + %)
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Governing Equations: ng Species in Vibrational Nonequilibrium

Multiple species

r

p=A{p1,..., Pns}
n

p=3 ps
s=1
me oy

= RT
! = Ms
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Governing Equations: ng Species in Vibrational Nonequilibrium

Local time derivative
ou
ot

pv
pE

ey
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Governing Equations: ng Species in Vibrational Nonequilibrium
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Governing Equations: ng Species in Vibrational Nonequilibrium

Pressure flux gradient

oSS

—
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Governing Equations: ng Species in Vibrational Nonequilibrium

Diffusive flux gradient

V-Fq(U)
—J
T r
Fq(U) = (rv—a-a,—J3"h)’
(~av—I7e,)’
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Governing Equations: ng Species in Vibrational Nonequilibrium

Thermochemical source term

S (U)

w = {uwr,..., u',*,,.}T: mass production rates per volume
W
. 0
S(U) =
0
T \T. . . .
Qi—p+e, W e, = {(e,‘1 y--+»€u,, f : vibrational energies per mass
Qi—y : translational-vibrational energy exchange
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Vibrational Energy

Mixture vibrational energy per mass:

_ E : Ps
€y = — €y,
s=1 P
where
Ny
Y omii €vym (Ty)  for molecules,
€y, =
0 for atoms,
and
(T/) _ R 97)3,771,
e'Us,m

- M, exp (Hfus,n,,/T/) —1

ny,: number of vibrational modes of species s (n,, = 0 for atoms)

: characteristic vibrational temperature of mode m of species s

Oy
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Translational-Vibrational Energy Exchange

Landau—Teller model:

Qt—’u = ips ii Cvs,m (T) — Cusm (E‘)
s=1

(Ts,m)

m=1

Translational-vibrational energy relaxation time for mode m of species s:

n -1 Ns D !
~ Yy voON P /8 RT
) = —_— N v —
<7—.s.m> Z — + A M, Oug T M,
s'=1 7" s'=1
where
e — ps/]\[s ’ - exp [ax,m,s’ (T71/3 - b.s'.m‘,h:’) - 1842] g =a 50~000 K ’
4,'/37 , /-, S$,m,sT T ) kl Js T Vs
Ys Z:_] D /]\[S s,m 1% i 2 T

p’: pressure in atmospheres.

s m,s' and by, o vibrational constants for mode m of species s with colliding species s’
Na: Avogadro constant

0y, collision-limiting vibrational cross section

oy,.: collision-limiting vibrational cross section at 50,000 K.
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[ ]

Chemical Kinetics

Mass production rate per volume for species s: we = My Z (Bsr — o) ( —Ry,)

and backward reaction rates for reaction r:
; | ps \Por
and Ry, = ks, [152, (’ A\L)

and backward reaction rate coefficients:

and ky, (T) = 2k

Equilibrium constant for reaction r:

T 10,000 K 10,000 K 10,000 K\ 2
Ko (T)=exp [Ap [ ———— ) 4 Ay 4+ Ay In [ 2222 g, =000y (200
+(T) = exp | Ay, <]()A]00K>+ 2+ 4s, “< T >+”‘7 + 4 < >

T o T

o, and B, stoichiometric coefficients for species s in reaction r
~: unit conversion factor

Cy,, nr, A, empirical parameters

f,: activation energy of reaction r, divided by Boltzmann constant

T.: rate-controlling temperature (T. = /TT, for dissociation, T, = T for exchange)
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Scope of Code Verification

Conservation of mass, momentum, and energy:

%JW F.(U) = —V-F,(U)+ V-F, (U)+ S (U),

where
p va 0 —J
T
_ ) pv | pvv pl _ T )
U= pE F.(U) pEv Fy (U) pvT | Fa(U) = (Tv —q—qy — JTh)j
pe, pev’ o” (—aq, —I%,)"
p=A{p1,..., /7,,~}TA w = {uwr,..., u',*,,.}T: mass production rates per volume,
W ns s
0 p= Z Pss ey = Ls("l.‘: mixture vibrational energy per mass
s(U) ; = p=

Qv + efv'v b= - Ps RT e, = {(’,,‘1 yeens Cup, }T : vibrational energies per mass

o Mg Qi—y : translational-vibrational energy exchange

\V\‘

ZL((L,TJH(.' 1)
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Scope of Code Verification

Non-diffusive flux gradients Thermochemical source term

V-F.(U) V-F,(U) S (U)

@ Sandia National Laboratories



Equations
L ]

Scope of Code Verification
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Scope of Code Verification

Thermochemical source term

Implementation

w = {u1,..., u",,‘}l : mass production rates per volume
W
, 0
S(U) = 0
Qi +elw —
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Outline

e Verification Techniques for Spatial Accuracy
— Spatial Accuracy
— Solutions
— Error Norms
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Spatial Accuracy
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Spatial Accuracy (Steady State)

Discretized equations

r,(Up) =0
Discretization error is e;, = Uj, —
Truncation error is 7,(V) =1, (V) — v(V
Letting V = U and adding ,
Tr(Up) = 1p(Up) — r(Up) + = —r(Up
When r is linearized w.r.t. U, r(e) = —71,(Up)
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Spatial Accuracy (St

th

For p*"-order-accurate discretization, truncation error is

7 = r(U) — r(Uy,) = C.h? + O(hWPT)

h: relative characterization of cell sizes
e Between meshes, with respect to one dimension
e Individual cell sizes may be non-uniform functions of h

e Sufficiently fine meshes — asymptotic region (h?*! < hP)
e, =U, - U= Cyh?

C, and Cy: function of derivative(s) of state vector U

e Approximately constant between meshes in asymptotic region
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Order of Accuracy

Observed accuracy p computed using 2 meshes:
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Order of Accuracy

Observed accuracy p computed using 2 meshes:

@ Sandia National Laboratories



Spatial Accuracy
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Order of Accuracy

Observed accuracy p computed using 2 meshes:

Finer mesh (h/q)

(g-times as fine in each dimension)

ea = C(h/q)P
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Spatial Acc
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Order of Accuracy

Observed accuracy p computed using 2 meshes:

Finer mesh (h/q)

(g-times as fine in each dimension)

ea = C(h/q)P

p is computed by

log|ei/es]
log q

= log, le1/ea
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Solutions

Need solution to compute error
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Solutions

Exact Solutions
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Solutions

Exact Solutions

e Negligible implementation effort: r(Ugyact) = 0
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Solutions

Exact Solutions
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e Span small subset of application space

Manufactured Solutions

e Do not satisfy original equations: r(Uyg) # 0

@ Sandia National Laboratories



Spatial Accuracy
L ]

Solutions

Exact Solutions

e Negligible implementation effort: r(Ugyact) = 0
e Limited cases

e Span small subset of application space
Manufactured Solutions

e Do not satisfy original equations: r(Uyg) # 0

e Require source term: rj(Up) = r(Upg)
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Solutions

Exact Solutions

e Negligible implementation effort: r(Ugyact) = 0
e Limited cases

e Span small subset of application space

Manufactured Solutions
e Do not satisfy original equations: r(Uyg) # 0
e Require source term: rj(Up) = r(Upg)
e Manufactured to exercise features of interest

e Should be with
generally nonzero derivatives and moderate variations
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Solutions

Exact Solutions

e Negligible implementation effort: r(Ugyact) = 0
e Limited cases

e Span small subset of application space

Manufactured Solutions
e Do not satisfy original equations: r(Uyg) # 0
e Require source term: rj(Up) = r(Upg)
e Manufactured to exercise features of interest

e Should be smooth, continuously differentiable functions with
and moderate variations
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Solutions

Exact Solutions

e Negligible implementation effort: r(Ugyact) = 0
e Limited cases

e Span small subset of application space

Manufactured Solutions
e Do not satisfy original equations: r(Uyg) # 0
e Require source term: rj(Up) = r(Upg)
e Manufactured to exercise features of interest

e Should be smooth, continuously differentiable functions with
generally nonzero derivatives and
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Computing p at a single location in domain has two shortcomings:
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Error Norms
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Error Norms

Computing p at a single location in domain has two shortcomings:
e For cell-centered schemes, cell centers vary with mesh refinement
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Error Norms

Computing p at a single location in domain has two shortcomings:
e For cell-centered schemes, cell centers vary with mesh refinement
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Error Norms

Computing p at a single location in domain has two shortcomings:
e For cell-centered schemes, cell centers vary with mesh refinement

e In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: p = log, (€4, /€ay)

o Llnorm: €} = |lap(x) — a(x)||; = / lag (%) — a(x)|dQ
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— Average error

— Not significantly contaminated by localized deviations
(e.g., discontinuities, lower-order boundary conditions)
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Error Norms

Computing p at a single location in domain has two shortcomings:
e For cell-centered schemes, cell centers vary with mesh refinement
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Error Norms
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Error Norms

Computing p at a single location in domain has two shortcomings:
e For cell-centered schemes, cell centers vary with mesh refinement

e In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: p = log, (€4, /€ay)
o Llnorm: €} = |lap(x) — a(x)||; = / lag (%) — a(x)|dQ
Q

— Average error

— Not significantly contaminated by localized deviations
(e.g., discontinuities, lower-order boundary conditions)

o L®-norm: €50 = ||ap(x) — a(X)|leo = mag; |y (x) — a(x)]
xE

— Maximum error

— Catches localized deviations (expected and unexpected)
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Error Norms

Computing p at a single location in domain has two shortcomings:
e For cell-centered schemes, cell centers vary with mesh refinement

e In regions where error vanishes, computed p is meaningless

Error norms to quantify spatial accuracy: p = log, (€4, /€ay)
o Llnorm: €} = |lap(x) — a(x)||; = / lag (%) — a(x)|dQ
Q

— Average error

— Not significantly contaminated by localized deviations
(e.g., discontinuities, lower-order boundary conditions)

o L®-norm: €50 = ||ap(x) — a(X)|leo = max |y (x) — a(x)]
xE
— Maximum error
— Catches localized deviations (expected and unexpected)

e Without discontinuities, both norms should yield same p
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Outline

e Spatial-Discretization Verification Results
Single-Species Inviscid Flow in Thermochemical Equilibrium
— Five-Species Inviscid Flow in Chemical Nonequilibrium

Sandia National Laboratories



tial Results
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1D Supersonic Flow using a Manufactured Solution

¢ One-dimensional domain: z € [0, 1] m

e Boundary conditions:
Supersonic inflow (z = 0 m)

— Supersonic outflow (x =1 m)
e 5 uniform meshes: 50, 100, 200, 400, 800 elements
e Solution consists of small, smooth perturbations to uniform flow:

= p[l — esin(nz)],
u[l — esin(nz)],
T(x) = T [1+ esin(mz)],

kg/m?, T =300 K, M = 2.5, ¢ = 0.05

Sl
I
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1D Supersonic Flow using a Manufactured Solution

L -T5 .
& [
- ;
T -85 I
5 5
< PE
= 95} <
5 —+p ii - 0
= _100f T u — O(h) < T ——u — om)
e T — O(r?) == T — O(h?)
TSI 20 22 24 26 25 30 Y 18 20 22 24 26 28
logyn loggn
First-order accurate Second-order accurate
Original boundary conditions Corrected boundary conditions
Mesh p u T p u T
1-2 1.0008 1.0008 1.0008 2.0313 2.0362 2.0351
2-3  1.0002 1.0002 1.0002 2.0157 2.0184 2.0178
3-4  1.0001 1.0001 1.0000 2.0079 2.0093 2.0090
4-5  1.0000 1.0000 1.0000 2.0040 2.0047 2.0045
Observed accuracy p using L*°-norms of the error
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Spatial Results
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2D Supersonic Flow using a Manufactured Solution

e Two-dimensional domain: (z,y) € [0, 1] m x [0, 1] m

¢ Boundary conditions:

Supersonic inflow (z =0 m S N
p ( ) ‘Q‘-_‘\‘::%::‘:‘:}\‘::\‘:“‘“

S

Y

ngtt

— Supersonic outflow (z =1 m)
LN
1

— Slip wall (tangent flow) (y =0m & y =1 m)
e 5 nonuniform meshes: 25 x 25 — 400 x 400

e Solution consists of small, smooth
perturbations to uniform flow:

p(ey) = p [ esin (§r2) (sin ( my) + cos (7)),
w(e,y) =@ [1 -+ esin (3r2) (sin ( my) +cos (7)),
0 (e,y) = [ — esin (§mo) (sin ( ) ),
T(z,y) = T[1+esin (37z) (sin ( my) + cos ( 7y))],

p=1kg/m? T =300 K, M =25, ¢ =0.05
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Flow using a Manufactured Solution

olp /i
1.05 1.05
104

1.04
1.03
102 1.03
101 1.02
1.00
0.99 1.01
0-98 .00
0.97

9

0.96 0.99
0.95 0.98
0.91

097
0.93
0.92 0.96

v/o T/T

0.04 1.08
107

0.03
1.06
0.02 1.05
0.01 104
1.03
0.00 1.02
~0.01 1ot
1.00
~0.02 0.9
~0.03 0.98
097

—0.04
0.96
~0.05 0.95




Spatial Results
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2D Supersonic Flow using a Manufactured Solution

Ja), a={p, u, v, T}

lOgm(fi/[i)- a={p,u,v, T}

logy(
|
=

12 14 16 18 20 22 24 26 28 2 14 16 1s 20 22 24 26 28
logy v/n logo v/
First-order accurate Second-order accurate

Original boundary conditions Corrected boundary conditions
Mesh p u v T p u v T
1-2 0.9420 0.9409 0.9721 0.9628 2.0623 1.9188 1.8174 1.8598
2-3  0.9850 0.9902 0.9910 0.9874 2.1304 1.9450 1.9221 1.9280
3-4 0.9960 1.0002 0.9924 0.9952 2.0902 1.9603 1.9671 1.9586
4-5 0.9989 1.0009 0.9959 0.9984 2.0128 1.9823 1.9860 1.9809

Observed accuracy p using L*°-norms of the error
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Spatial Results
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sonic Flow using an Exact Solution

¢ Two-dimensional domain: (r,0) € [1, 1.384] x [0, 90]°
¢ Boundary conditions:
Supersonic inflow (0 = 90°)
— Supersonic outflow (6 = 0°)
— Slip wall (tangent flow) (r =1 & r = 1.384)
e 6 meshes: 32 x 8 — 1024 x 256

e Solution is steady isentropic vortex:

ug(r) = 7(1,,,\[7%‘

o= gt (- (7))

pi=1a,=1 M; =225 T, =1/(vR)
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onic Flow using an Exact Solution

/

oo ufug
28 L0
26 09
0t 08
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22
06
20
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18
0.4
16
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14 02
12 01
10 00
y y
L, . T—» z
ofu /T
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08 140
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06 130
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Spatial Results
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2D Supersonic Flow using an Exact Solution

Jaw), a={p, u, v, T}

00
Sa

log;o(

1.2 14 1.6 1.8 2.0 2.2 2.4 2.6 2.8

logyo v/t
Mesh p U v T
1-2 1.9896 1.9119 1.9943 1.9699
2-3  1.9735 1.9589 2.0070 1.9979
3-4  1.9954 1.9760 2.0099 2.0076
4-5  1.9972 1.9879 2.0054 2.0044
5-6  1.9986 1.9940 2.0029 2.0025
Observed accuracy p using L*°-norms of the error
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onic Flow using a Manufactured Solution

e Three-dimensional domain: (x,y,z) € [0, 1] m x [0, 1] m x [0, 1] m
¢ Boundary conditions:
Supersonic inflow (z = 0 m)
— Supersonic outflow (z =1 m)
— Slip wall (tangent flow)

(y=0m,y=1m,z2=0m, z=1m)

¢ 5 nonuniform meshes:
25 x 25 x 25 — 400 x 400 x 400

e Solution consists of small, smooth
perturbations to uniform flow:
p(x,y.z) = p[l — esin (3rz) (sin(my) + cos(my))(sin(mz) + cos(m2))]. §

u(x,y, 2

w(x,y,z

) (
) =l (
v(e,y,2) = o[ —esin(:
)= (
)=T][ (

T(x,y, 2




Spatial Results

000000000e

3D Supersonic Flow using a Manufactured Solution

{p, u, v, w, T}

a), a=

o/
a

log, (¢,

1.2 1.4 1.6 1.8 20 22 2.4 2.6 2.8
logy ¥/n

Mesh p u v w T

1-2 2.0849 1.8731 1.9841 1.7039 1.9404

2-3  2.1406 1.9923 1.9295 1.8621 1.9774
3-4  2.0990 2.0115 1.9623 1.9349 1.9922
4-5  2.0585 2.0100 1.9820 1.9571 1.9964
Observed accuracy p using L*°-norms of the error
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Spatial Results
0000

Five-Species Air Model

5 species: Ng, Oo, NO, N, and O

17 reactions:

r Reaction Type of Reaction

1-5 No+ M=N+N+M, M={Ny Oy, NO, N, O} Dissociation
6-10 O3+ M=0+0+M, M={Ny, O, NO, N, O} Dissociation
11-15 NO+ M =N+0+M, M={Ny, Oz, NO, N, O} Dissociation

16 No+ O =N+NO Exchange

17 NO+ O =N+ 0y Exchange

@ Sandia National Laboratories



Spatial Results
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Five-Species Inviscid Flow in Chemical Nonequilibrium

e Two-dimensional domain: (z,y) € [0, 1] m x [0, 1] m
e Same boundary conditions
e 7 nonuniform meshes: 25 x 25 — 1600 x 1600

e Solution consists of small, smooth perturbations to uniform flow

PN, (Z,Y) = PN, [1 — esin (%ﬂ'r) (%in( Try) + cos ( 7«';1/))} =-_;_‘__:§\\‘}\§‘\\\\\‘\ AARN \\‘%45;\—»;‘
005 (T.Y) = po, [1 + esin (%TFT) (sin ( my) +cos ( wy))] :%%i -‘H‘E; Y {‘%t‘\* H%
§ES=EESSSSRRS B i
pno(@.y) = pno [l + esin ( mz) (sin ( 7y) )] e .Eis;.'ggsg. .'::..",ﬁji
#-'fﬂif:#"'.iiiii#ﬁﬁ il
px (@) =px [1+esin( o) (cos (my) o S 7
R R E s5enacs
po (z,y) = po [1 + (sin( TF(L‘) (sin( Try) + cos (%m/))} :”i“:;i!i':ﬁ":'g::'. “,,::%E::,:
T R 71 !
u  (z,y) =1 [l + esin (}lﬂ'(lf) (sin( Try) + (‘Ub( ’/le))} :,,:; %.ﬂ:j’ég:;;:::;g 7 — ‘H:;;
ay, -, =
) _ - o (BN (s 7 ==.'==l T .i:n f—#g ﬁ:%{:?a(
v (.r-y) (0 [ 65111(471'.1) (sm( ﬂ'y) )} H“ HTHE iﬁ - iEEE
T (zy)=1 [1 + €sin (ﬁiﬂr) (sm ( Try) + cos ( 77;1/))} - F&‘Tﬁ \ms\:s\‘;\é‘{ i@;ﬁ%
T, (z,y) =T, [l+esin (%TFT) (sin (%ﬂy) + cos (3my))] FEEEEE, TR SRinst
xT
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Spatial Results

00e00
ies Inviscid Flow in Chemical Nonequilibrium

s/ Py 0,/P0, pro/ine

:
1010 102 095
L 1000 T—) 100 L 0.96

’ vfv : T/T : T,/T,
106 1.06
o
103 102
0.02 00 :: L;_’
v 0.93

L : 005
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Spatial Results
00080

2D Supersonic Flow in Thermal Equilibrium using a Manufactured Solution

-2 T T T T
Variable Value  Units -
; = -3 1
PN, 0.77  kg/m? <
PO, 0.20  kg/m? =y ]
oo 0.01  kg/m? =
N 0.01  kg/m? I s E
PO 0.01  kg/m? = P2
T 3500 K 7 0 pos 1
]\7 2.5 % PNO Y u
; 0.05 e ]
po =T — Oh?)
0 15 2.0 2.5 3.0 35
logyo V1t
Mesh PN, PO, PNO PN PO U v T
1-2  2.0608 2.1382 2.0698 2.0644 2.1885 1.8425 1.8289 1.7351
2-3 21161 2.1219 2.1127 2.1072 2.1697 1.8875 1.9220 1.7923
3-4  2.0798 2.0813 1.8555 2.0754 2.0971 1.9200 1.9686 1.8525
4-5  2.0456 2.0458 1.8917 2.0428 2.0806 1.9522 1.9871 1.9079
56  2.0243 2.0243 1.9427 2.0228 2.0529 1.9735 1.9939 1.9485
6-7 2.0125 2.0125 1.9790 2.0118 2.0318 1.9865 1.9969 1.9737
2D MMS, ng =5, T, = T, w # 0: Observed accuracy p using L*-norms of the error
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Spatial Results
0000e

sonic Flow in Thermal Nonequilibrium using a Manufactured Solution

Variable Value  Units

=~

N, 0.0077  kg/m? &

POy 0.0020 kg/m? 3
no  0.0001 kg/m? 3

Il

Bl

PN 0.0001 kg/m?

po  0.0001 kg/m? =5
T 5000 K > 1
T, 1000 K i
M 8 57 o , 1
e 0.05 e e e .

1.0 1.5 2.0 2.5 3.0 3.5

logyy v/

Mesh PNy POy PNO PN PO u v T TL.

12 1.5659 1.6370 1.6555 1.6046 1.5869 1.7742 1.7337 1.7814 1.5545
2-3  1.9067 1.6944 1.6986 1.7598 1.8819 1.8916 1.8701 1.8768 1.9150

34 1.9868 2.0475 2.0698 2.0477 2.0110 1.9488 1.9357 1.9349 2.0082
4-5  2.0074 1.9941 2.0138 1.9936 2.0089 1.9752 1.9684 1.9672 2.0168
5-6  2.0062 1.9939 2.0004 1.9935 2.0061 1.9879 1.9843 1.9836 2.0111
6-7 2.0037 1.9965 1.9994 1.9962 1.9955 1.9940 1.9922 1.9918 2.0063
2D MMS, ng =5, T, # T, w # 0: Observed accuracy p using L*-norms of the error
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¢ Verification Techniques for Thermochemical Source Term
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— Distinctive Features
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Source Term
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Verification Techniques for Thermochemical Source Term

¢ S(U) = [w; 0; 0; Q¢—y + €] W] is algebraic
— S(U) computed by same code for both sides of r,(Up) = r(Upys)
— Manufactured solutions will not detect implementation errors

e Compute Q;—(p,T,Ty), e,(p,T,Ty,), and w(p, T, T,)

— For single-cell mesh when initialized to {p, T, T,,} with no velocity

For many values of {p, T, T}

— Compare with independently developed code

Perform convergence studies on distribution and difference

e For each query, compute symmetric relative difference
o /
55 =2 | Bsparc /5,\
|Bsparc| + |5']

B = {Qrﬂu Cux,s Cuo, s Conos WNas WO,, WNO, N, lifo}

@ Sandia National Laboratories



Source Term
L]

Distinctive Features

This is not typical low-rigor code-to-code comparison

@ Sandia National Laboratories



Source Term
L]

Distinctive Features

This is not typical low-rigor code-to-code comparison

Distinctive and rigorous features:

@ Sandia National Laboratories



Source Term

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:

e Code is independently developed internally

@ Sandia National Laboratories



Source Term
L]

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC

@ Sandia National Laboratories



Source Term

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC

— Models and properties taken directly from the original references

@ Sandia National Laboratories



Source Term

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC
— Models and properties taken directly from the original references
— With external software, assessing implementation is non-trivial

@ Sandia National Laboratories



Source Term

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC
— Models and properties taken directly from the original references
— With external software, assessing implementation is non-trivial

* Variety of models and properties complicates quantifying agreement

@ Sandia National Laboratories



Source Term

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC
— Models and properties taken directly from the original references
— With external software, assessing implementation is non-trivial
* Variety of models and properties complicates quantifying agreement

* Less control over precision of output

@ Sandia National Laboratories



Source Term
L]

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC
— Models and properties taken directly from the original references
— With external software, assessing implementation is non-trivial
* Variety of models and properties complicates quantifying agreement

* Less control over precision of output

* Relative differences required to be low — near machine precision

@ Sandia National Laboratories



Source Term
L]

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC
— Models and properties taken directly from the original references
— With external software, assessing implementation is non-trivial
* Variety of models and properties complicates quantifying agreement

* Less control over precision of output

* Relative differences required to be low — near machine precision

— Models and material properties are the same

@ Sandia National Laboratories



Source Term
L]

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC
— Models and properties taken directly from the original references
— With external software, assessing implementation is non-trivial
* Variety of models and properties complicates quantifying agreement

* Less control over precision of output

* Relative differences required to be low — near machine precision
— Models and material properties are the same

Typically code-to-code comparison accepts a few percent

@ Sandia National Laboratories



Source Term
L]

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC
— Models and properties taken directly from the original references
— With external software, assessing implementation is non-trivial
* Variety of models and properties complicates quantifying agreement

* Less control over precision of output

* Relative differences required to be low — near machine precision
— Models and material properties are the same

Typically code-to-code comparison accepts a few percent

e Wide condition coverage

@ Sandia National Laboratories



Source Term
L]

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally
Uses same models and material properties expected from SPARC
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Source Term
L ]

Distinctive Features

This is not typical low-rigor code-to-code comparison
Distinctive and rigorous features:
e Code is independently developed internally

Uses same models and material properties expected from SPARC
— Models and properties taken directly from the original references
— With external software, assessing implementation is non-trivial
* Variety of models and properties complicates quantifying agreement

* Less control over precision of output
* Relative differences required to be low — near machine precision
— Models and material properties are the same
Typically code-to-code comparison accepts a few percent
e Wide condition coverage

— Comparison is queried for 1000s of conditions, spans extreme ranges

— Code-to-code comparison typically considers single or few conditions
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Source Results
[ ]

Outline

¢ Thermochemical-Source-Term Verification Results
— Samples of Qi—(p, T, T,), ey(p,T,T,), and w(p, T, T,)
— Nonzero Relative Differences in Q;_, and e,
— Nonzero Relative Differences in w
— Convergence History of Relative Differences
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Source Results

Convergence History of Qi—(p,T,Ty), ev(p,T,T,), and w(p,T,T),)

20
Variable Minimum Maximum  Units Spacing

PNy 1076 10! kg/m?  Logarithmic

PO, 1076 10! kg/m?  Logarithmic =

PNO 10-6 10! kg/ms Logarithmic &

PN 1076 10! kg/m?  Logarithmic %

PO 1076 10! kg/m® Logarithmic £ .

T 100 15,000 K Linear - EZ i ‘(‘,J”"‘?' .
o aaT —— Qi) = Qi

T, 100 15,000 K Linear 10 e Q1) = max Qs

Ranges and spacings for Latin hypercube samples 8 - - - - - - - -

0 2 4 6 8 10 12 14 16 18

. ) logy ns
A\Illllnllllll, mean, ‘de maximuin

8 15
6
10 1
4
9 - —— m(W) = minw
_ 5 1
3ol e (o) = mine, 5 () =W
T —— m(e,) = &, = ok —— m(W) = maxw |
g 2T —— m(e,) = maxe, 5%
4} = 5tk 1
6}
—10 | 1
st
10 . . . . . . . . 15 . . . . . . . .
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
log, ns log, ns
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burce Results

Variable Minimum Maximum  Units Spacing
PNy 1076 10! kg/m?  Logarithmic
PO, 10~6 10! kg/m?  Logarithmic
PNO 10-6 10! kg/nfs Logarithmic
PN 1076 10! kg/m?  Logarithmic
PO 1076 10! kg/m?  Logarithmic
T 100 15,000 K Linear
T, 100 15,000 K Linear

Ranges and spacings for Latin hypercube samples

Distribution of absolute values for ng = 27 = 131,072

6

-4 -2

0

4

6 8
log1o [ Q1o

10

12 14 16 18 20

logyo [W]
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Source Results
@00

Original Nonzero Relative Differences in );_, and e,

logjo 1,
.
logygn,

logyo de, 10g19 Je.
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Source Results
@00

Original Nonzero Relative Differences in );_, and e,

logyo 1y
.
logiom

logyo de, 10g19 Je.

* Relative differences are not near machine precision
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Source Results
@00

Original Nonzero Relative Differences in );_, and e,

logjo 1,
.
logygn,

logyo de, N 10g19 Je.

5, >10%

* 60, , > 10% in 8.7% of simulations
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Source Results
@00

Original Nonzero Relative Differences in );_, and e,

logyo 1y
.
logiom

logyo de, N 10g19 Je.

3Q,_>1%

* 60, , > 1% in 29% of simulations
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Source Results
@00

Original Nonzero Relative Differences in );_, and e,

logjo 1,
.
logygn,

logyo de, 10g19 Je.

~—
ey >100%

* Je, > 100% for some simulations
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Source Results
oeo

Causes of Large Relative Differences in ();_, and e,

Two causes:
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Source Results
oeo

Causes of Large Relative Differences in ();_, and e,

Two causes:
e Incorrect lookup table values for vibrational constants
For Ny and O when the colliding species is NO
— Introduced error in Q;_, for all simulations

— For high-enthalpy (20 MJ/kg), hypersonic, laminar double-cone flow,
1.4% change in pressure and 2.7% change in heat flux
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Source Results
oeo

Causes of Large Relative Differences in ();_, and e,

Two causes:

e Loose convergence criteria for computing 7, from pe,

— Unsuitable for low values of T,
— Introduced errors in Q;_,, €,, and w for a few simulations

— For converged, steady problem, original criteria are acceptable
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Source Results
ooe

Corrected Nonzero Relative Differences in ();_, and e,

Original lookup table and convergence criteria

5

logyg 1y

logyo de, 10g19 Je.

Sandia National Laboratories



burce Results
ooe

Corrected Nonzero Relative Differences in ();_, and e,

Original lookup table and convergence criteria

5
1
3
2
1
0
S0 -9 8 -7 6 5 -4 -3 -2 -1 0 1 16 —-14 -12 -10 -8 -6 -4 -2 0 2
logyo de, log1 de,

Corrected lookup table and tighter convergence criteria

5

13 15.0 14.5 14.0

log; dg, logyg e,




Source Results
ooe

Corrected Nonzero Relative Differences in ();_, and e,

* Relative differences are consistent with our expectations

log,g 14
logyq g

15.0 14.5 14.0

10g de,

13

10g10 00,
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Source Results
ooe

Corrected Nonzero Relative Differences in ();_, and e,

¢ 50, , <1071% and de, < 107 in all simulations

log,gnq

log,g 14

15.0 14.5 14.0

13 :
logy de,

log; dg,
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Source Results
ooe

Corrected Nonzero Relative Differences in ();_, and e,

e 50, , > 10712 in 48/131,072 simulations

log,gnq

log,g 14

15.0 14.5 14.0

13 :
logy de,

log; dg,
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Source Results
ooe

Corrected Nonzero Relative Differences in ();_, and e,

e 50, , > 10712 in 48/131,072 simulations

— T and T, have relative difference less than 0.2%

log,gnq

log,g 14

15.0 14.5 14.0

13 :
logy de,

log; dg,
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Source Results
ooe

Corrected Nonzero Relative Differences in ();_, and e,

e 50, , > 10712 in 48/131,072 simulations

— T and T, have relative difference less than 0.2%

e T)—e,. T,
In numerator of vam ( <) vom “>. ey, .. (T) and e, . (T,) share
o) 3 Cugm sm

many leading digits

log,gnq

log,g 14

15.0 14.5 14.0

13 :
logy de,

log; dg,
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Source Results
ooe

Corrected Nonzero Relative Differences in ();_, and e,

e 50, , > 10712 in 48/131,072 simulations

— T and T, have relative difference less than 0.2%
Coum <T)7e""“'"’(T“>, ev,.,.(T') and e, (T}) share

€
In numerator of
(Ts,m)
many leading digits

— Precision lost when computing difference
6

5

log,gnq

log,g 14

15.0 14.5 14.0

13 :
logy de,

log; dg,
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burce Results
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Nonzero Relative Differences in w

Original convergence criteria Tighter convergence criteria

16 15 14 13

logyg dw 10819 0v

13 12
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Source Results
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Nonzero Relative Differences in w

Original convergence criteria Tighter convergence criteria

logyg 1y

16 15 14 13 16 15 14 13 12

logyg dw 10819 0v

e Relative differences are consistent with our expectations
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Source Results
[ ]

Nonzero Relative Differences in w

Original convergence criteria

Tighter convergence criteria

logyg 1y

16 15 14 13

16 15 14 13 12

logyg dw 10819 0v

e 6y < 1079 in all simulations
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Source Results
[ ]

Nonzero Relative Differences in w

Original convergence criteria

Tighter convergence criteria

logyg 1y

16 15 14 13

16 15 14 13 12

logyg dw 10819 0v

e Jy > 10712 for 109/655,360 computed values (5 species, 131,072 sinulations)
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Source Results
[ ]

Nonzero Relative Differences in w

Original convergence criteria

Tighter convergence criteria

logyg 1y

16 15 14 13

16 15 14 13 12

logyg dw 10819 0v

e Jy > 10712 for 109/655,360 computed values (5 species, 131,072 sinulations)

— Due to precision loss that can occur from subtraction in

ws = M 2721 (58,7’ - O‘SJ‘) (RJ} - Rbr)
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Source Results

°
imum Differences in Q;—(p,T,T}), e,(p,T,T,), and w(p,T,T),)
2
Variable Minimum Maximum  Units Spacing 0 -‘\/_»_A-—/‘_/_“‘
PNy 1076 10! kg/m?  Logarithmic -
PO, 10~6 10! kg/m?  Logarithmic i —+— Original
PNO 10-6 10! kg/m} Logarithmic S 6 —— Corrected
PN 1076 10! kg/m?  Logarithmic E g
PO 1076 10! kg/m® Logarithmic £ _,
T 100 15,000 K Linear 1
T, 100 15,000 K Linear "
Ranges and spacings for Latin hypercube samples 16 PR 5 T o6 s
log, ns
Maximum relative differences o
2 -9
or 10} 1
ol
“nt ]
< 2
2 -6r —s— Original 2 —l2r T
T gl —— Corrected T,
—%? S Corrected —g _13F 4
—14} g
—— Original
-1 —e— Corrected |
16 . . . . . . . .

log, ns log, ns
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e Summary
— Code-Verification Techniques
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Summary
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Code-Verification Techniques

e Manufactured and exact solutions

— Effective approaches for verifying spatial accuracy — detected multiple issues
— Rigorous norms improve effectiveness — L°°-norm of error more useful

— Insufficient for algebraic source terms — both evaluations the same

e Thermochemical-source-term approach
Effective approach for verifying implementation — detected multiple issues

— Convergence study important to determine whether samples sufficiently span
ranges
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Additional Information

B. Freno, B. Carnes, V. Weirs
Code-Verification techniques for hypersonic reacting flows in thermochemical nonequilibrium
Journal of Computational Physics (2021) arXiv:2007.14376
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https://doi.org/10.1016/j.jcp.2020.109752
https://doi.org/10.1016/j.jcp.2020.109752
https://doi.org/10.1016/j.jcp.2020.109752
https://arxiv.org/abs/2007.14376

Questions?
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