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Electromagnetic Integral Equations

• Are commonly used to model electromagnetic scattering and radiation

• Relate surface current to incident electric and/or magnetic field

• Discretize surface of electromagnetic scatterer with elements

• Evaluate 4D reaction integrals over 2D test and source elements

• Contain singular integrands when test and source elements are near
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Electromagnetic Aperture and Slot Models

• EM penetration occurs through openings of otherwise closed surfaces

• Penetration may occur intentionally or unintentionally

• Slot connects exterior surface of scatterer to interior surface of cavity

• Model slot as wires carrying magnetic current located at apertures
– Exterior surface interacts with exterior wire
– Interior surface interacts with interior wire
– Exterior and interior wires interact with each other
– Exterior and interior surfaces do not interact directly
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Verification and Validation

Credibility of computational physics codes requires verification and validation

• Validation assesses how well models represent physical phenomena
– Compare computational results with experimental results
– Assess suitability of models, model error, and bounds of validity

• Verification assesses accuracy of numerical solutions against expectations
– Solution verification estimates numerical error for particular solution
– Code verification verifies correctness of numerical-method implementation
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Code Verification

• Code verification most rigorously assesses rate at which error decreases

• Error requires exact solution – usually unavailable
• Manufactured solutions are popular alternative

– Manufacture an arbitrary solution
– Insert manufactured solution into governing equations to get residual term
– Add residual term to equations to coerce solution to manufactured solution

• For integral equations, few instances of code verification exist

• Analytical differentiation is straightforward – analytical integration is not

• Numerical integration is necessary, generally incurs an approximation error

• Therefore, manufactured source term may have its own numerical error
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Error Sources in the Electromagnetic Integral Equations

3 sources of numerical error:
• Domain discretization: Representation of curved surfaces with planar elements

– Second-order error for curved surfaces, no error for planar surfaces
– Error reduced with curved elements

• Solution discretization: Representation of solution or operators
– Common in solution to differential, integral, and integro-differential equations
– Finite number of basis functions to approximate solution
– Finite samples queried to approximate underlying equation operators

• Numerical integration: Quadrature
– Analytical integration is not always possible
– For well-behaved integrands,· Expect integration error at least same order as solution-discretization error· Less rigorously, error should decrease with more quadrature points

– For (nearly) singular integrands, monotonic convergence is not assured
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This Work

Isolate solution-discretization error

• Manufacture solution

• Eliminate numerical-integration error by manufacturing Green’s function

• Mitigate contamination from discontinuity due to wire–surface interaction

Isolate numerical-integration error

• Manufacture solution

• Cancel solution-discretization error using basis functions

Avoid domain-discretization error

• Consider only planar surfaces

• Previously provided approaches to account for domain-discretization error
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Thick Slot Model Overview
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• Electromagnetic scatterer encloses a cavity

• Exterior is connected to interior by rectangularly prismatic slot with L� w, d (left)

• Slot is replaced with two thin wires at apertures that carry magnetic current (right)

• Exterior and interior surfaces interact with wires, not each other

• Wires interact with each other – magnetic current is equal and opposite

• EFIE solved on each surface, slot equation solved for wires
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The Electric-Field Integral Equation
In time-harmonic form, ES computed from J and M

Scattered electric field ES(x) = −
(
jωA(x) +∇Φ(x) + 1

ε
∇× F(x)

)
Magnetic vector potential A(x) = µ

∫
S′

J(x′)G(x,x′)dS′

Electric scalar potential Φ(x) = j

εω

∫
S′
∇′ · J(x′)G(x,x′)dS′

Electric vector potential F(x) = ε

∫
S′

M(x′)G(x,x′)dS′

Green’s function G(x,x′) = e−jkR

4πR , R = |x− x′|
Singularity when R! 0

J and M are electric and magnetic surface current densities
S′ = S is surface of scatterer
µ and ε are permeability and permittivity of surrounding medium
k = ω

√
µε is wavenumber
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The Electric-Field Integral Equation (continued)

Compute J and M from incident electric field EI
(
n× (ES + EI) = Zsn× J

)
Discretize surface with triangles, approximate J with RWG basis functions:

Jh(x) =
nb∑
j=1

JjΛj(x)

Project EFIE onto vector-valued RWG basis functions

Express M in terms of filament magnetic current Im

Discretize wire with bars, approximate Im with 1D basis functions:

Ih(s) =
nmb∑
j=1

IjΛm
j (s)
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The Slot Equation

The magnetic current along the slot is modeled using transmission line theory:

s ·
[
J× n + 1

4

(
YL

d2

ds2 − YC
)

Im
]

= 0

Im(0) = Im(L) = 0

s is the direction of the wire
Effective wire radius a obtained from conformal mapping using w and d
YL and YC are transmission line parameters (depend on w, d, and materials)

Project slot equation onto vector-valued 1D basis functions
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Discretized Problem

Find Jh ∈ Vh and Ih ∈ Vmh , such that

aE,E(Jh,Λi ) + aE,M(Ih,Λi ) = bE
(
EI ,Λi

)
for i = 1, . . . , nb (EFIE)

aM,E(Jh,Λm
i ) + aM,M(Ih,Λm

i ) = 0 for i = 1, . . . , nmb (Slot)

Evaluate EFIE on exterior and interior surfaces: nextb + nintb unknowns for Jh

For thick slot, Iextm = −Iintm : nmb unknowns for Ih
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Matrix–Vector Form

In matrix–vector form, solve for J h:

ZJ h = V

Z =

Aext 0 Bext

0 Aint −Bint

Cext −Cint D

 ,
Impedance matrix

J h =


Jhext

Jhint

Ih

 ,
Current vector

V =


VE ext

VE int

0

 ,
Excitation vector

where

Ai,j = aE,E(Λj ,Λi), Bi,j = aE,M(Λm
j ,Λi), Ci,j = aM,E(Λj ,Λm

i ), Di,j = 2aM,M(Λm
j ,Λm

i ),

Jhj = Jj , Ihj = Ij , V Ej = bE
(
EI ,Λi

)

More compactly: Z =
[
A B
C D

]
, J h =

{
Jh
Ih

}
, V =

{
VE
0

}
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Manufactured Solutions for the EFIE
Continuous: rEi(J , Im) = aE,E(J ,Λi) + aE,M(Im,Λi)− bE

(
EI ,Λi

)
= 0

Discretized: rEi(Jh, Ih ) = aE,E(Jh,Λi) + aE,M(Ih ,Λi)− bE
(
EI ,Λi

)
= 0

Method of manufactured solutions modifies discretized equations:

rE(Jh, Ih) = rE(JMS, IMS)

JMS and IMS are manufactured solutions, rE(JMS, IMS) is computed exactly

New Discretized: aE,E(Jh,Λi)+aE,M(Ih,Λi) = aE,E(JMS,Λi) + aE,M(IMS,Λi)︸ ︷︷ ︸
= bE

(
EI ,Λi

)
: implement via EI

EI(x) = j

εω

∫
S′

[
k2JMS(x′)G(x,x′) +∇′ · JMS(x′)∇G(x,x′)

]
dS′ + ZsJMS(x)

− 1
4
(
n(x)× IMS(x)

)
δslot(x) + 1

4π

∫ L

0
IMS(s′)×

∫ 2π

0
∇′G(x,x′)dφ′ds′

MMS incorporated through EI – no additional source term required
Freno et al. Manufactured Solutions for an Electromagnetic Slot Model 18 / 40



Introduction Equations Code Verification Numerical Examples Summary

Manufactured Solutions for the Slot Equation

Continuous: rMi(J , Im) = aM,E(J ,Λm
i ) + aM,M(Im,Λm

i ) = 0

Discretized: rMi(Jh, Ih ) = aM,E(Jh,Λm
i ) + aM,M(Ih ,Λm

i ) = 0

Method of manufactured solutions modifies discretized equations:

rM(Jh, Ih) = rM(JMS, IMS)

New Discretized:

aM,E(Jh,Λm
i ) + aM,M(Ih,Λm

i ) = aM,E(JMS,Λm
i ) + aM,M(IMS,Λm

i )︸ ︷︷ ︸
= 0: no source term needed

Given JMS, solve for IMS to avoid source term
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Solution-Discretization Error
• Error due to basis-function approximations of solutions:

Jh(x) =
nb∑
j=1

JjΛj(x), Ih(s) =
nmb∑
j=1

IjΛm
j (s)

• Measured with discretization errors: eJ = Jh − Jn, eI = Ih − Is

‖eJ‖ ≤ CJh
pJ , ‖eI‖ ≤ CIh

pI

Jnj : component of JMS flowing from T+
j to T−j

Isj : component of IMS flowing along s at sj
C : function of solution derivatives
h : measure of mesh size
p : order of accuracy

• Compute p from ‖e‖ across multiple meshes (expect p = 2 for these bases)

• Avoid numerical-integration error if integrating exactly
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Solution-Discretization Error: Discontinuity

• δslot introduces discontinuity due to wire interaction with surface

• Discontinuity impacts EI for MMS

• Discontinuity will contaminate convergence studies: O(h2)! O(h)

• Discontinuity denoted by B1 in Z =
[
A (B1 + B2)
C D

]
• Since B1 = −1

4CT , use C to cancel contribution from B1 and modify EI :

Z =
[
A (��B1 + B2)
C D

]
,

EI = j

εω

∫
S′

[
k2JMSG+∇′ · JMS∇G

]
dS′ −

��������1
4
(
n× IMS

)
δslot + 1

4π

∫ L

0
IMS ×

∫ 2π

0
∇′Gdφ′ds′ + ZsJMS

• Correctness of B1 is assessed by successful removal using C

• Correctness of C is assessed through the mesh-convergence study
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Numerical-Integration Error

• Error due to quadrature integral evaluation (·)q on both sides of equations

• Measure numerical-integration error:

ea = JH(Zq − Z)J , eb = JH(Vq −V),

where J =
{

Jn
Is

}

• Solution-discretization error is canceled

• |ea| ≤ Cahpa and |eb| ≤ Cbhpb

C: function of integrand derivatives
p: order of accuracy of quadrature rules

• With multiple meshes, compute p from |e|
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Manufactured Green’s Function

Integrals with G cannot be computed analytically or, when R! 0, accurately

Inaccurately computing integrals on either side contaminates convergence studies

Manufacture Green’s function: GMS(R) = G0
(
1− R2

R2
m

)q
, Rm = max

x,x′∈S
R and q ∈ N

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R/Rm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
G

M
S
/G

0

q = 1

q = 2

q = 3

q = 4

q = 5

Reasoning:
1) Even powers of R permit integrals to be computed analytically
2) GMS increases when R decreases, as with actual G
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Cubic Scatterer with a Triangularly Prismatic Cavity

y

z

x

z

Lext

Lext

Lint
bint

aint

L

aslot

bslot

LextLint

cint

z0

w

L int

L
int

d

x0

xintw

x y

z

xy

z

• Lext = 1 m, Lint = 2Lext/3, L = Lext/3, w = Lext/50
• aint = Lext/6, cint = Lext/6, z0 = Lext/2
• µ = µ0, ε = ε0, k = 2π m−1, σ of aluminum
• 3 depths: d1 = Lext/10, d2 = Lext/100, d3 = Lext/1000
• 2 Green’s functions: G1, G2
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Manufactured Solutions
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• Manufacture solutions for 2D strips of class C2

• Wrap strips around lateral surfaces of prisms
• Solutions are product of ξ and η dependencies

– ξ dependency: sinusoid with a single period
– η dependency: cubed sinusoid with a half period

• Current flows along ξ; at slot, Jext
ξ = J int

ξ
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Magnetic Current

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

s/L

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

I m
r
/I

0

d1

d2

d3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

s/L

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

I m
i
/I

0
[×

10
3
]

d1

d2

d3

• Instead of arbitrarily manufacturing IMS = Ims, solve for it given JMS:

−Jξθ(ξ) + 1
4

(
YL

d2

ds2 − YC
)
Im(s) = 0

• Solution is

Im(s) = C1 cosh
(
s

Z

)
+ C2 sinh

(
s

Z

)
+ C3 sin

(
π(s+ ∆a)

Lint

)
+ C4 sin

(3π(s+ ∆a)
Lint

)
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Numerical Integration
• Surface integrals evaluated using 2D triangle quadrature rules

• Wire integrals evaluated using 1D bar quadrature rules

Maximum Number of Number of Convergence
integrand degree 2D points 1D points rate

1 1 1 O(h2)
2 3 — O(h4)
3 4 2 O(h4)
4 6 — O(h6)
5 7 3 O(h6)

n = 3 n = 4 n = 6 n = 7
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Solution-Discretization Error: ε = ‖e‖∞ (eJ ↔ eI)
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G2, d2

G2, d3

e = eJ e = eI

• Discontinuity present:[
A B
C D

]{
Jh
Ih

}
=
{

VE
0

}

• eJ and eI are interdependent (eJ ↔ eI)

• Convergence rate for ‖eJ‖∞ is negative – not exhibiting asymptotic convergence

• Convergence rate for ‖eI‖∞ is close to O(h2)
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Solution-Discretization Error: ε = ‖e‖∞ (eJ = eI)
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e = eJ e = eI

• Decouple discretization errors:[
A B
C D

]{
Jh
Ih

}
=
{

VE
0

}
!

[
A 0
0 D

]{
Jh
Ih

}
=
{

VE −BIs
−CJn

}

• eJ and eI are independent (eJ = eI)

• Convergence rates for ‖eJ‖∞ and ‖eI‖∞ are O(h) and O(h2) as expected

• ‖eJ‖∞ is much larger than when eJ ↔ eI
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Solution-Discretization Error: ε = ‖e‖∞ (eJ ! eI)
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e = eJ e = eI

• Remove influence of eI on eJ, preserve influence of eJ on eI:[
A B
C D

]{
Jh
Ih

}
=
{

VE
0

}
!

[
A 0
C D

]{
Jh
Ih

}
=
{

VE −BIs
0

}

• eJ affects eI (eJ ! eI)

• Convergence rates for ‖eJ‖∞ and ‖eI‖∞ are O(h) as expected

• ‖eJ‖∞ and ‖eI‖∞ are much larger than when eJ ↔ eI
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Solution-Discretization Error: ε = ‖e‖∞ (eJ  eI)
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e = eJ e = eI

• Remove influence of eJ on eI, preserve influence of eI on eJ:[
A B
C D

]{
Jh
Ih

}
=
{

VE
0

}
!

[
A B
0 D

]{
Jh
Ih

}
=
{

VE
−CJn

}

• eI affects eJ (eJ  eI)

• Convergence rates for ‖eJ‖∞ and ‖eI‖∞ are O(h) and O(h2) as expected

• ‖eJ‖∞ is much larger than when eJ ↔ eI
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Solution-Discretization Error: ε = ‖e‖∞ (Discontinuity Removed)
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• Discontinuity removed from Z using C, corresponding MMS source term omitted in VE :[
A B
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}
=
{
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0

}
!

[
A (��B1 + B2)
C D
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}
=
{
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}

• Convergence rates for ‖eJ‖∞ and ‖eI‖∞ are O(h2) as expected

• Correct implementation of B1 suggested by its removal using C

• Correct implementation of C suggested by expected convergence rates
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Numerical-Integration Error: ε = |ea| (G = G2, d = d1)
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• 2D points: [number for test integral] × [number for source integral]

• 1D points: n̄bq = number of 1D points with same convergence rate as 2D points

• Convergence rates are as expected for nbq = n̄bq

• Convergence rates are limited to O(h2) for nbq = 1
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Numerical-Integration Error: ε = |ea| (G = G2, d = d3)
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nbq = n̄bq max nbq = 1

• 2D points: [number for test integral] × [number for source integral]

• 1D points: n̄bq = number of 1D points with same convergence rate as 2D points

• Convergence rates are as expected for nbq = n̄bq

• Convergence rates are limited to O(h2) for nbq = 1
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Numerical-Integration Error: ε = |eb| (G = G2, d = d1)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

log10

√
nt

−14

−12

−10

−8

−6

−4

−2

0

2

4

lo
g

1
0
(ε
/ε

0
)

O(h2)

O(h4)

O(h6)

1

3

6

4

7

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

log10

√
nt

−14

−12

−10

−8

−6

−4

−2

0

2

4

lo
g

1
0
(ε
/ε

0
)

O(h2)

O(h4)

1

3

6

4

7

nbq = n̄bq max nbq = 2

• 2D points: number for test integral

• 1D points: n̄bq = number of 1D points with same convergence rate as 2D points

• Convergence rates are as expected for nbq = n̄bq

• Convergence rates are limited to O(h4) for nbq = 2
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Numerical-Integration Error: ε = |eb| (G = G2, d = d3)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

log10

√
nt

−14

−12

−10

−8

−6

−4

−2

0

2

4

lo
g

1
0
(ε
/ε

0
)

O(h2)

O(h4)

O(h6)

1

3

6

4

7

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

log10

√
nt

−14

−12

−10

−8

−6

−4

−2

0

2

4

lo
g

1
0
(ε
/ε

0
)

O(h2)

O(h4)

1

3

6

4

7

nbq = n̄bq max nbq = 2

• 2D points: number for test integral

• 1D points: n̄bq = number of 1D points with same convergence rate as 2D points

• Convergence rates are as expected for nbq = n̄bq

• Convergence rates are limited to O(h4) for nbq = 2
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Outline

• Introduction

• Governing Equations

• Code-Verification Approaches

• Numerical Examples

• Summary
– Closing Remarks
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Closing Remarks

3 error sources in electromagnetic integral equations:
• Domain-discretization error – avoided

– Considered planar surfaces

• Solution-discretization error – isolated
– Manufactured J, chose Im to avoid source term
– Manufactured Green’s function (to integrate exactly)
– Removed discontinuity to measure convergence rates without contamination
– Demonstrated discontinuity implications by varying eJ ↔ eI

• Numerical-integration error – isolated
– Canceled basis-function contribution
– Detected coding error

Achieved expected orders of accuracy
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Questions? bafreno@sandia.gov brianfreno.github.io
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