MANUFACTURED SOLUTIONS FOR AN ELECTROMAGNETIC SLOT MODEL

Brian A. Freno Neil R. Matula Robert A. Pfeiffer Evelyn A. Dohme Joseph D. Kotulski Sandia National Laboratories

16th World Congress on Computational Mechanics 4th Pan American Congress on Computational Mechanics July 21–26, 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Equations

Code Verification

Numerical Examples

Summary 00

Outline

- Introduction
- Governing Equations
- Code-Verification Approaches
- Numerical Examples
- Summary

Introd	uction
0000	

Equations 0000000 Code Verification

Numerical Examples

Summary 00

Outline

- Introduction
 - Electromagnetic Integral Equations
 - Verification and Validation
 - Error Sources
 - This Work
- Governing Equations
- Code-Verification Approaches
- Numerical Examples
- Summary

- Are commonly used to model electromagnetic scattering and radiation
- Relate surface current to incident electric and/or magnetic field
- Discretize surface of electromagnetic scatterer with elements
- Evaluate 4D reaction integrals over 2D test and source elements
- Contain singular integrands when test and source elements are near

Introduction Equations Code Verification Numerical Examples S coolooco cooloocoocoocoolooco cooloocoocoocoocoocoocooc

- EM penetration occurs through openings of otherwise closed surfaces
- Penetration may occur intentionally or unintentionally
- Slot connects exterior surface of scatterer to interior surface of cavity
- Model slot as wires carrying magnetic current located at apertures
 - Exterior surface interacts with exterior wire
 - Interior surface interacts with interior wire
 - Exterior and interior wires interact with each other
 - Exterior and interior surfaces do not interact directly

Credibility of computational physics codes requires verification and validation

- Validation assesses how well models represent physical phenomena
 - Compare computational results with experimental results
 - Assess suitability of models, model error, and bounds of validity
- Verification assesses accuracy of numerical solutions against expectations
 - Solution verification estimates numerical error for particular solution
 - $-\ Code\ verification$ verifies correctness of numerical-method implementation

- Code verification most rigorously assesses rate at which error decreases
- Error requires exact solution usually unavailable
- Manufactured solutions are popular alternative
 - Manufacture an arbitrary solution
 - Insert manufactured solution into governing equations to get residual term
 - Add residual term to equations to coerce solution to manufactured solution
- For integral equations, few instances of code verification exist
- Analytical differentiation is straightforward analytical integration is not
- Numerical integration is necessary, generally incurs an approximation error
- Therefore, manufactured source term may have its own numerical error

3 sources of numerical error:

- Domain discretization: Representation of curved surfaces with planar elements
 - Second-order error for curved surfaces, no error for planar surfaces
 - Error reduced with curved elements
- Solution discretization: Representation of solution or operators
 - Common in solution to differential, integral, and integro-differential equations
 - Finite number of basis functions to approximate solution
 - Finite samples queried to approximate underlying equation operators
- Numerical integration: Quadrature
 - Analytical integration is not always possible
 - For well-behaved integrands,
 - Expect integration error at least same order as solution-discretization error
 - Less rigorously, error should decrease with more quadrature points
 - For (nearly) singular integrands, monotonic convergence is not assured

Introduction				
	•			
This	Work			

Equations 0000000 Code Verification

Numerical Examples

Summary 00

Isolate solution-discretization error

- Manufacture solution
- Eliminate numerical-integration error by manufacturing Green's function
- Mitigate contamination from discontinuity due to wire–surface interaction

Isolate numerical-integration error

- Manufacture solution
- Cancel solution-discretization error using basis functions

Avoid domain-discretization error

- Consider only planar surfaces
- Previously provided approaches to account for domain-discretization error

Equations \bullet 000000

Code Verification

Numerical Examples

Summary 00

Outline

- Introduction
- Governing Equations
 - Overview
 - The Electric-Field Integral Equation
 - The Slot Equation
 - Discretization
- Code-Verification Approaches
- Numerical Examples
- Summary

- Electromagnetic scatterer encloses a cavity
- Exterior is connected to interior by rectangularly prismatic slot with $L \gg w, d$ (left)
- Slot is replaced with two thin wires at apertures that carry magnetic current (right)
- Exterior and interior surfaces interact with wires, not each other
- Wires interact with each other magnetic current is equal and opposite
- EFIE solved on each surface, slot equation solved for wires

The Electric-Field Integral Equation

Equations

In time-harmonic form, $\mathbf{E}^{\mathcal{S}}$ computed from \mathbf{J} and \mathbf{M}

 $\mathbf{E}^{\mathcal{S}}(\mathbf{x}) = -\left(j\omega\mathbf{A}(\mathbf{x}) + \nabla\Phi(\mathbf{x}) + \frac{1}{\epsilon}\nabla\times\mathbf{F}(\mathbf{x})\right)$ Scattered electric field $\mathbf{A}(\mathbf{x}) = \mu \int_{S'} \mathbf{J}(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') dS'$ Magnetic vector potential $\Phi(\mathbf{x}) = \frac{j}{\epsilon_{\prime\prime\prime}} \int_{c\prime} \nabla' \cdot \mathbf{J}(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') dS'$ Electric scalar potential $\mathbf{F}(\mathbf{x}) = \epsilon \int_{S'} \mathbf{M}(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') dS'$ Electric vector potential $G(\mathbf{x}, \mathbf{x}') = \frac{e^{-jkR}}{4\pi R}, \qquad R = |\mathbf{x} - \mathbf{x}'|$ Green's function Singularity when $R \rightarrow 0$

J and **M** are electric and magnetic surface current densities S' = S is surface of scatterer μ and ϵ are permeability and permittivity of surrounding medium $k = \omega \sqrt{\mu \epsilon}$ is wavenumber

Freno et al. Manufactured Solutions for an Electromagnetic Slot Model

Compute **J** and **M** from incident electric field $\mathbf{E}^{\mathcal{I}}$ $(\mathbf{n} \times (\mathbf{E}^{\mathcal{S}} + \mathbf{E}^{\mathcal{I}}) = Z_s \mathbf{n} \times \mathbf{J})$

Discretize surface with triangles, approximate **J** with RWG basis functions:

$$\mathbf{J}_h(\mathbf{x}) = \sum_{j=1}^{n_b} J_j \mathbf{\Lambda}_j(\mathbf{x})$$

Project EFIE onto vector-valued RWG basis functions

Express **M** in terms of filament magnetic current \mathbf{I}_m

Discretize wire with bars, approximate \mathbf{I}_m with 1D basis functions:

$$\mathbf{I}_h(s) = \sum_{j=1}^{n_b^m} I_j \mathbf{\Lambda}_j^m(s)$$

	$\operatorname{Equations}_{0000000}$	Code Verification	Numerical Examples	
The Slot Equ	ation			

The magnetic current along the slot is modeled using transmission line theory:

$$\mathbf{s} \cdot \left[\mathbf{J} \times \mathbf{n} + \frac{1}{4} \left(Y_L \frac{d^2}{ds^2} - Y_C \right) \mathbf{I}_m \right] = 0$$

 $\mathbf{I}_m(0) = \mathbf{I}_m(L) = \mathbf{0}$

 ${\bf s}$ is the direction of the wire

Effective wire radius a obtained from conformal mapping using w and d Y_L and Y_C are transmission line parameters (depend on w, d, and materials)

Project slot equation onto vector-valued 1D basis functions

Equations	Code Verification	Numerical Examples	Summary
0000000			

Find $\mathbf{J}_h \in \mathbb{V}_h$ and $\mathbf{I}_h \in \mathbb{V}_h^m$, such that

iscretized Problem

 $a_{\mathcal{E},\mathcal{E}}(\mathbf{J}_h, \mathbf{\Lambda}_i) + a_{\mathcal{E},\mathcal{M}}(\mathbf{I}_h, \mathbf{\Lambda}_i) = b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_i)$ for $i = 1, \ldots, n_h$ (EFIE) for $i = 1, \ldots, n_b^m$ (Slot) $a_{\mathcal{M}\mathcal{E}}(\mathbf{J}_{h}, \mathbf{\Lambda}_{i}^{m}) + a_{\mathcal{M}\mathcal{M}}(\mathbf{I}_{h}, \mathbf{\Lambda}_{i}^{m}) = 0$

Evaluate EFIE on exterior and interior surfaces: $n_b^{\text{ext}} + n_b^{\text{int}}$ unknowns for \mathbf{J}_h

For thick slot, $\mathbf{I}_m^{\text{ext}} = -\mathbf{I}_m^{\text{int}}$: n_h^m unknowns for \mathbf{I}_h

	••••••		
Matrix-Vecto	or Form		

In matrix–vector form, solve for \mathcal{J}^h :

 $\mathbf{Z}\mathcal{J}^{h} = \mathbf{V}$

where

$$\begin{aligned} A_{i,j} &= a_{\mathcal{E},\mathcal{E}}(\mathbf{\Lambda}_j, \mathbf{\Lambda}_i), \quad B_{i,j} &= a_{\mathcal{E},\mathcal{M}}(\mathbf{\Lambda}_j^m, \mathbf{\Lambda}_i), \quad C_{i,j} &= a_{\mathcal{M},\mathcal{E}}(\mathbf{\Lambda}_j, \mathbf{\Lambda}_i^m), \quad D_{i,j} &= 2a_{\mathcal{M},\mathcal{M}}(\mathbf{\Lambda}_j^m, \mathbf{\Lambda}_i^m), \\ J_j^h &= J_j, \qquad I_j^h &= I_j, \qquad V_j^{\mathcal{E}} &= b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_i) \end{aligned}$$

More compactly:
$$\mathbf{Z} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}, \qquad \mathcal{J}^h = \begin{cases} \mathbf{J}^h \\ \mathbf{I}^h \end{cases}, \qquad \mathbf{V} = \begin{cases} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{cases}$$

Equations 0000000 Code Verification $\circ \circ \circ \circ \circ \circ \circ \circ \circ$

Numerical Examples

Summary 00

Outline

- Introduction
- Governing Equations
- Code-Verification Approaches
 - Manufactured Solutions
 - Solution-Discretization Error
 - Numerical-Integration Error
 - Manufactured Green's Function
- Numerical Examples
- Summary

Introduction Equations Code Verification Numerical Examples Summary

Continuous: $r_{\mathcal{E}_i}(\mathbf{J}, \mathbf{I}_m) = a_{\mathcal{E},\mathcal{E}}(\mathbf{J}, \mathbf{\Lambda}_i) + a_{\mathcal{E},\mathcal{M}}(\mathbf{I}_m, \mathbf{\Lambda}_i) - b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_i) = 0$ Discretized: $r_{\mathcal{E}_i}(\mathbf{J}_h, \mathbf{I}_h) = a_{\mathcal{E},\mathcal{E}}(\mathbf{J}_h, \mathbf{\Lambda}_i) + a_{\mathcal{E},\mathcal{M}}(\mathbf{I}_h, \mathbf{\Lambda}_i) - b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_i) = 0$

Method of manufactured solutions modifies discretized equations:

$$\mathbf{r}_{\mathcal{E}}(\mathbf{J}_{h},\mathbf{I}_{h})=\mathbf{r}_{\mathcal{E}}(\mathbf{J}_{\mathrm{MS}},\mathbf{I}_{\mathrm{MS}})$$

 $J_{\rm MS}$ and $I_{\rm MS}$ are manufactured solutions, $r_{\cal E}(J_{\rm MS},I_{\rm MS})$ is computed exactly

New Discretized:
$$a_{\mathcal{E},\mathcal{E}}(\mathbf{J}_h, \mathbf{\Lambda}_i) + a_{\mathcal{E},\mathcal{M}}(\mathbf{I}_h, \mathbf{\Lambda}_i) = \underbrace{a_{\mathcal{E},\mathcal{E}}(\mathbf{J}_{\mathrm{MS}}, \mathbf{\Lambda}_i) + a_{\mathcal{E},\mathcal{M}}(\mathbf{I}_{\mathrm{MS}}, \mathbf{\Lambda}_i)}_{= b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_i): \text{ implement via } \mathbf{E}^{\mathcal{I}}}$$

$$\begin{split} \mathbf{E}^{\mathcal{I}}(\mathbf{x}) &= \frac{j}{\epsilon \omega} \int_{S'} \left[k^2 \mathbf{J}_{\mathrm{MS}}(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') + \nabla' \cdot \mathbf{J}_{\mathrm{MS}}(\mathbf{x}') \nabla G(\mathbf{x}, \mathbf{x}') \right] dS' + Z_s \mathbf{J}_{\mathrm{MS}}(\mathbf{x}) \\ &- \frac{1}{4} (\mathbf{n}(\mathbf{x}) \times \mathbf{I}_{\mathrm{MS}}(\mathbf{x})) \delta_{\mathrm{slot}}(\mathbf{x}) + \frac{1}{4\pi} \int_0^L \mathbf{I}_{\mathrm{MS}}(s') \times \int_0^{2\pi} \nabla' G(\mathbf{x}, \mathbf{x}') d\phi' ds' \end{split}$$

MMS incorporated through $\mathbf{E}^{\mathcal{I}}$ – no additional source term required

et al. Manufactured Solutions for an Electromagnetic Slot Model

N				
	Equations	Code Verification	Numerical Examples	

Continuous:
$$r_{\mathcal{M}_i}(\mathbf{J}, \mathbf{I}_m) = a_{\mathcal{M}, \mathcal{E}}(\mathbf{J}, \mathbf{\Lambda}_i^m) + a_{\mathcal{M}, \mathcal{M}}(\mathbf{I}_m, \mathbf{\Lambda}_i^m) = 0$$

Discretized: $r_{\mathcal{M}_i}(\mathbf{J}_h, \mathbf{I}_h) = a_{\mathcal{M}, \mathcal{E}}(\mathbf{J}_h, \mathbf{\Lambda}_i^m) + a_{\mathcal{M}, \mathcal{M}}(\mathbf{I}_h, \mathbf{\Lambda}_i^m) = 0$

Method of manufactured solutions modifies discretized equations:

 $\mathbf{r}_{\mathcal{M}}(\mathbf{J}_{h},\mathbf{I}_{h}) = \mathbf{r}_{\mathcal{M}}(\mathbf{J}_{\mathrm{MS}},\mathbf{I}_{\mathrm{MS}})$

New Discretized:

= 0: no source term needed

Given $J_{\rm MS}$, solve for $I_{\rm MS}$ to avoid source term

- Solution-Discretization Error
 - Error due to basis-function approximations of solutions:

$$\mathbf{J}_h(\mathbf{x}) = \sum_{j=1}^{n_b} J_j \mathbf{\Lambda}_j(\mathbf{x}), \qquad \mathbf{I}_h(s) = \sum_{j=1}^{n_b^m} I_j \mathbf{\Lambda}_j^m(s)$$

• Measured with discretization errors: $\mathbf{e}_{\mathbf{J}} = \mathbf{J}^h - \mathbf{J}_n$, $\mathbf{e}_{\mathbf{I}} = \mathbf{I}^h - \mathbf{I}_s$

$$\|\mathbf{e}_{\mathbf{J}}\| \le C_{\mathbf{J}} h^{p_{\mathbf{J}}}, \qquad \|\mathbf{e}_{\mathbf{I}}\| \le C_{\mathbf{I}} h^{p_{\mathbf{I}}}$$

- J_{n_i} : component of \mathbf{J}_{MS} flowing from T_i^+ to T_i^-
- I_{s_i} : component of \mathbf{I}_{MS} flowing along s at s_i
- C: function of solution derivatives
- h: measure of mesh size
- p: order of accuracy
- Compute p from $\|\mathbf{e}\|$ across multiple meshes (expect p = 2 for these bases)
- Avoid numerical-integration error if integrating exactly

- + $\delta_{\rm slot}$ introduces discontinuity due to wire interaction with surface
- Discontinuity impacts $\mathbf{E}^{\mathcal{I}}$ for MMS
- Discontinuity will contaminate convergence studies: $\mathcal{O}(h^2) \rightarrow \mathcal{O}(h)$
- Discontinuity denoted by \mathbf{B}_1 in $\mathbf{Z} = \begin{bmatrix} \mathbf{A} & (\mathbf{B}_1 + \mathbf{B}_2) \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$

• Since $\mathbf{B}_1 = -\frac{1}{4}\mathbf{C}^T$, use \mathbf{C} to cancel contribution from \mathbf{B}_1 and modify $\mathbf{E}^{\mathcal{I}}$:

$$\mathbf{Z} = \begin{bmatrix} \mathbf{A} & (\mathbf{B}_1 + \mathbf{B}_2) \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

- Correctness of \mathbf{B}_1 is assessed by successful removal using \mathbf{C}
- Correctness of ${\bf C}$ is assessed through the mesh-convergence study

- Error due to quadrature integral evaluation $(\cdot)^q$ on both sides of equations
- Measure numerical-integration error:

$$e_a = \mathcal{J}^H (\mathbf{Z}^q - \mathbf{Z}) \mathcal{J}, \qquad e_b = \mathcal{J}^H (\mathbf{V}^q - \mathbf{V}),$$

where $\mathcal{J} = \left\{ \begin{aligned} \mathbf{J}_n \\ \mathbf{I}_s \end{aligned} \right\}$

- Solution-discretization error is canceled
- $|e_a| \leq C_a h^{p_a}$ and $|e_b| \leq C_b h^{p_b}$

C: function of integrand derivatives p: order of accuracy of quadrature rules

• With multiple meshes, compute p from |e|

Integrals with G cannot be computed analytically or, when $R \to 0$, accurately

Inaccurately computing integrals on either side contaminates convergence studies

Manufacture Green's function: $G_{\rm MS}(R) = G_0 \left(1 - \frac{R^2}{R_m^2}\right)^q$, $R_m = \max_{\mathbf{x}, \mathbf{x}' \in S} R$ and $q \in \mathbb{N}$

Reasoning:

1) Even powers of R permit integrals to be computed analytically 2) $G_{\rm MS}$ increases when R decreases, as with actual G

Freno et al. Manufactured Solutions for an Electromagnetic Slot Model

Equations 0000000 Code Verification

Numerical Examples

Summary 00

Outline

- Introduction
- Governing Equations
- Code-Verification Approaches
- Numerical Examples
 - Overview
 - Solution-Discretization Error
 - Numerical-Integration Error
- Summary

Equations

Code Verification

Numerical Examples

Summary 00

Manufactured Solutions

- Manufacture solutions for 2D strips of class ${\cal C}^2$
- Wrap strips around lateral surfaces of prisms
- Solutions are product of ξ and η dependencies
 - $\,\xi$ dependency: sinusoid with a single period
 - η dependency: cubed sinusoid with a half period
- Current flows along ξ ; at slot, $J_{\xi}^{\text{ext}} = J_{\xi}^{\text{int}}$

• Instead of arbitrarily manufacturing $\mathbf{I}_{MS} = I_m \mathbf{s}$, solve for it given \mathbf{J}_{MS} :

s/L

$$-J_{\xi_{\theta}}(\xi) + \frac{1}{4} \left(Y_L \frac{d^2}{ds^2} - Y_C \right) I_m(s) = 0$$

-4.5 <u>-</u> 0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s/L

1.0

• Solution is

-1.8

0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$$I_m(s) = C_1 \cosh\left(\frac{s}{Z}\right) + C_2 \sinh\left(\frac{s}{Z}\right) + C_3 \sin\left(\frac{\pi(s + \Delta a)}{L^{\text{int}}}\right) + C_4 \sin\left(\frac{3\pi(s + \Delta a)}{L^{\text{int}}}\right)$$

0000000	

Equations 0000000 Code Verification

Numerical Examples

Summary 00

Numerical Integration

- Surface integrals evaluated using 2D triangle quadrature rules
- Wire integrals evaluated using 1D bar quadrature rules

Maximum integrand degree	Number of 2D points	Number of 1D points	Convergence rate
1	1	1	$\mathcal{O}(h^2)$
2	3		$\mathcal{O}(h^4)$
3	4	2	$\mathcal{O}(h^4)$
4	6		$\mathcal{O}(h^6)$
5	7	3	$\mathcal{O}(h^6)$

• Discontinuity present:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix}$$

- $\mathbf{e}_{\mathbf{J}}$ and $\mathbf{e}_{\mathbf{I}}$ are interdependent $(\mathbf{e}_{\mathbf{J}} \leftrightarrow \mathbf{e}_{\mathbf{I}})$
- Convergence rate for $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$ is negative not exhibiting asymptotic convergence
- Convergence rate for $\|\mathbf{e}_{\mathbf{I}}\|_{\infty}$ is close to $\mathcal{O}(h^2)$

Decouple discretization errors:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} - \mathbf{B} \mathbf{I}_s \\ -\mathbf{C} \mathbf{J}_n \end{pmatrix}$$

- $\mathbf{e}_{\mathbf{J}}$ and $\mathbf{e}_{\mathbf{I}}$ are independent $(\mathbf{e}_{\mathbf{J}} \nleftrightarrow \mathbf{e}_{\mathbf{I}})$
- Convergence rates for $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$ and $\|\mathbf{e}_{\mathbf{I}}\|_{\infty}$ are $\mathcal{O}(h)$ and $\mathcal{O}(h^2)$ as expected
- $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$ is much larger than when $\mathbf{e}_{\mathbf{J}} \leftrightarrow \mathbf{e}_{\mathbf{I}}$

• Remove influence of $\mathbf{e}_{\mathbf{I}}$ on $\mathbf{e}_{\mathbf{J}}$, preserve influence of $\mathbf{e}_{\mathbf{J}}$ on $\mathbf{e}_{\mathbf{I}}$:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} - \mathbf{B} \mathbf{I}_s \\ \mathbf{0} \end{pmatrix}$$

• $\mathbf{e}_{\mathbf{J}}$ affects $\mathbf{e}_{\mathbf{I}}$ ($\mathbf{e}_{\mathbf{J}} \rightarrow \mathbf{e}_{\mathbf{I}}$)

- Convergence rates for $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$ and $\|\mathbf{e}_{\mathbf{I}}\|_{\infty}$ are $\mathcal{O}(h)$ as expected
- $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$ and $\|\mathbf{e}_{\mathbf{I}}\|_{\infty}$ are much larger than when $\mathbf{e}_{\mathbf{J}} \leftrightarrow \mathbf{e}_{\mathbf{I}}$

• Remove influence of **e**_J on **e**_I, preserve influence of **e**_I on **e**_J:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ -\mathbf{C}\mathbf{J}_n \end{pmatrix}$$

• $\mathbf{e}_{\mathbf{I}}$ affects $\mathbf{e}_{\mathbf{J}}$ ($\mathbf{e}_{\mathbf{J}} \leftarrow \mathbf{e}_{\mathbf{I}}$)

- Convergence rates for $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$ and $\|\mathbf{e}_{\mathbf{I}}\|_{\infty}$ are $\mathcal{O}(h)$ and $\mathcal{O}(h^2)$ as expected
- $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$ is much larger than when $\mathbf{e}_{\mathbf{J}} \leftrightarrow \mathbf{e}_{\mathbf{I}}$

• Discontinuity removed from Z using C, corresponding MMS source term omitted in $\mathbf{V}^{\mathcal{E}}$:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & (\mathbf{\mathcal{B}}_1 + \mathbf{B}_2) \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix}$$

- Convergence rates for $\|\mathbf{e}_{\mathbf{J}}\|_{\infty}$ and $\|\mathbf{e}_{\mathbf{I}}\|_{\infty}$ are $\mathcal{O}(h^2)$ as expected
- Correct implementation of \mathbf{B}_1 suggested by its removal using \mathbf{C}
- Correct implementation of C suggested by expected convergence rates

- 2D points: [number for test integral] × [number for source integral]
- 1D points: \bar{n}_q^b = number of 1D points with same convergence rate as 2D points
- Convergence rates are as expected for $n_q^b = \bar{n}_q^b$
- Convergence rates are limited to $\mathcal{O}(h^2)$ for $n_q^b = 1$

- 2D points: [number for test integral] \times [number for source integral]
- 1D points: \bar{n}_a^b = number of 1D points with same convergence rate as 2D points
- Convergence rates are as expected for $n_a^b = \bar{n}_a^b$
- Convergence rates are limited to $\mathcal{O}(h^2)$ for $n_a^b = 1$

- 2D points: number for test integral
- 1D points: \bar{n}_q^b = number of 1D points with same convergence rate as 2D points
- Convergence rates are as expected for $n^b_q = \bar{n}^b_q$
- Convergence rates are limited to $\mathcal{O}(h^4)$ for $n_q^b = 2$

- 2D points: number for test integral
- 1D points: \bar{n}_q^b = number of 1D points with same convergence rate as 2D points
- Convergence rates are as expected for $n^b_q = \bar{n}^b_q$
- Convergence rates are limited to $\mathcal{O}(h^4)$ for $n_q^b = 2$

Equations 0000000 Code Verification

Numerical Examples

Summary ••

Outline

- Introduction
- Governing Equations
- Code-Verification Approaches
- Numerical Examples
- Summary
 - Closing Remarks

Equations 0000000 Code Verification

Numerical Examples

Summary ○●

Closing Remarks

3 error sources in electromagnetic integral equations:

- Domain-discretization error avoided
 - Considered planar surfaces
- Solution-discretization error isolated
 - Manufactured \mathbf{J} , chose \mathbf{I}_m to avoid source term
 - Manufactured Green's function (to integrate exactly)
 - Removed discontinuity to measure convergence rates without contamination
 - Demonstrated discontinuity implications by varying $\mathbf{e_J} \leftrightarrow \mathbf{e_I}$
- Numerical-integration error isolated
 - Canceled basis-function contribution
 - Detected coding error

Achieved expected orders of accuracy

	$\begin{array}{c} \text{Equations} \\ \text{0000000} \end{array}$	Code Verification	Numerical Examples	
Questions?	bafre	no@sandia.gov	brianfreno.gi	thub.io
Additional I	nformation			
• B. Freno, N. Manufactured Journal of Co	Matula, W. Johns solutions for the mputational Phys	son method-of-moments impler sics (2021) arXiv:2012.086	nentation of the EFIE 81	
• B. Freno, N. M. Code-verificat Journal of Co	Matula, J. Owen, ion techniques for mputational Phys	W. Johnson r the method-of-moments in sics (2022) arXiv:2106.133	nplementation of the EFIE 198	
• B. Freno, N. M Code verificat Journal of Co	Matula ion for practically mputational Phys	y singular equations sics (2022) arXiv:2204.017	'85	

- B. Freno, N. Matula Code-verification techniques for the method-of-moments implementation of the MFIE Journal of Computational Physics (2023) arXiv:2209.09378
- B. Freno, N. Matula Code-verification techniques for the method-of-moments implementation of the CFIE Journal of Computational Physics (2023) arXiv:2302.06728
- B. Freno, N. Matula, R. Pfeiffer, E. Dohme, J. Kotulski Manufactured solutions for an electromagnetic slot model Journal of Computational Physics (2024) arXiv:2406.14573

Fin Sandia National Laboratories