Code-Verification Techniques for an Arbitrary-Depth Electromagnetic Slot Model

Brian A. Freno, Neil R. Matula, Robert A. Pfeiffer, Vinh Q. Dang Sandia National Laboratories

> IEEE International Symposium on Antennas and Propagation North American Radio Science Meeting July 13–18, 2025

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Sandia National Laboratories

Introduction 0000000 Equations

Code Verification

Numerical Examples

Summary 00

Outline

- Introduction
- Governing Equations
- Code-Verification Approaches
- Numerical Examples
- Summary

Introd	uction	
00000		

Equations 0000000 Code Verification

Numerical Examples

Summary 00

Outline

- Introduction
 - Electromagnetic Integral Equations
 - Verification and Validation
 - Error Sources
 - This Work
- Governing Equations
- Code-Verification Approaches
- Numerical Examples
- Summary

- Are commonly used to model electromagnetic scattering and radiation
- Relate surface current to incident electric and/or magnetic field
- Discretize surface of electromagnetic scatterer with elements
- Evaluate 4D reaction integrals over 2D test and source elements
- Contain singular integrands when test and source elements are near

Introduction Equations Code Verification Numerical Examples Second <th

- EM penetration occurs through openings of otherwise closed surfaces
- Penetration may occur intentionally or unintentionally
- Slot connects exterior surface of scatterer to interior surface of cavity
- Model slot as wires carrying magnetic current located at apertures
 - Exterior surface interacts with exterior wire
 - Interior surface interacts with interior wire
 - Exterior and interior wires interact with each other
 - Exterior and interior surfaces do not interact directly

Credibility of computational physics codes requires verification and validation

- Validation assesses how well models represent physical phenomena
 - Compare computational results with experimental results
 - Assess suitability of models, model error, and bounds of validity
- Verification assesses accuracy of numerical solutions against expectations
 - Solution verification estimates numerical error for particular solution
 - $-\ Code\ verification\ verifies\ correctness\ of\ numerical-method\ implementation$

Introduction Equations Code Verification Numerical Examples Summary

- Code verification most rigorously assesses rate at which error decreases
- Error requires exact solution usually unavailable
- Manufactured solutions are popular alternative
 - Manufacture an arbitrary solution
 - Insert manufactured solution into governing equations to get residual term
 - Add residual term to equations to coerce solution to manufactured solution
- For integral equations, few instances of code verification exist
- Analytical differentiation is straightforward analytical integration is not
- Numerical integration is necessary, generally incurs an approximation error
- Therefore, manufactured source term may have its own numerical error

3 sources of numerical error:

- Domain discretization: Representation of curved surfaces with planar elements
 - Second-order error for curved surfaces, no error for planar surfaces
 - Error reduced with curved elements
- Solution discretization: Representation of solution or operators
 - Common in solution to differential, integral, and integro-differential equations
 - Finite number of basis functions to approximate solution
 - Finite samples queried to approximate underlying equation operators
- Numerical integration: Quadrature
 - Analytical integration is not always possible
 - For well-behaved integrands,
 - Expect integration error at least same order as solution-discretization error
 - Less rigorously, error should decrease with more quadrature points
 - For (nearly) singular integrands, monotonic convergence is not assured

Introduction			
	•		
This	Work		

Equations 0000000 Code Verification

Numerical Examples

Summary 00

Isolate solution-discretization error

- Manufacture solution
- Eliminate numerical-integration error by manufacturing Green's function
- Mitigate contamination from discontinuity due to wire–surface interaction

Isolate numerical-integration error

- Manufacture solution
- Cancel solution-discretization error using basis functions

Avoid domain-discretization error

- Consider only planar surfaces
- Previously provided approaches to account for domain-discretization error

Introduction 0000000 Equations \bullet 000000

Code Verification

Numerical Examples

Summary 00

Outline

- Introduction
- Governing Equations
 - Overview
 - The Electric-Field Integral Equation
 - The Slot Equation
 - Discretization
- Code-Verification Approaches
- Numerical Examples
- Summary

- Electromagnetic scatterer of arbitrary depth d encloses a cavity
- Exterior is connected to interior by rectangularly prismatic slot with $L \gg w$ (left)
- Slot is replaced with two thin wires at apertures that carry magnetic current (right)
- Exterior and interior surfaces interact with wires, not each other
- Wires interact with each other through waveguide model
- EFIE solved on each surface, slot equation solved for wires

The Electric-Field Integral Equation

Equations

In time-harmonic form, $\mathbf{E}^{\mathcal{S}}$ computed from \mathbf{J} and \mathbf{M}

 $\mathbf{E}^{\mathcal{S}}(\mathbf{x}) = -\left(j\omega\mathbf{A}(\mathbf{x}) + \nabla\Phi(\mathbf{x}) + \frac{1}{\epsilon}\nabla\times\mathbf{F}(\mathbf{x})\right)$ Scattered electric field $\mathbf{A}(\mathbf{x}) = \mu \int_{S'} \mathbf{J}(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') dS'$ Magnetic vector potential $\Phi(\mathbf{x}) = \frac{j}{\epsilon_{\prime\prime\prime}} \int_{c\prime} \nabla' \cdot \mathbf{J}(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') dS'$ Electric scalar potential $\mathbf{F}(\mathbf{x}) = \epsilon \int_{S'} \mathbf{M}(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') dS'$ Electric vector potential $G(\mathbf{x}, \mathbf{x}') = \frac{e^{-jkR}}{4\pi R}, \qquad R = |\mathbf{x} - \mathbf{x}'|$ Green's function Singularity when $R \rightarrow 0$

J and **M** are electric and magnetic surface current densities S' = S is surface of scatterer μ and ϵ are permeability and permittivity of surrounding medium $k = \omega \sqrt{\mu \epsilon}$ is wavenumber

Compute **J** and **M** from incident electric field $\mathbf{E}^{\mathcal{I}}$ $(\mathbf{n} \times (\mathbf{E}^{\mathcal{S}} + \mathbf{E}^{\mathcal{I}}) = Z_s \mathbf{n} \times \mathbf{J})$

Discretize surface with triangles, approximate **J** with RWG basis functions:

$$\mathbf{J}_h(\mathbf{x}) = \sum_{j=1}^{n_b} J_j \mathbf{\Lambda}_j(\mathbf{x})$$

Project EFIE onto linear, vector-valued RWG basis functions

Express **M** in terms of filament magnetic current \mathbf{I}_m

Discretize wire with bars, approximate \mathbf{I}_m with 1D basis functions:

$$\mathbf{I}_h(s) = \sum_{j=1}^{n_b^m} I_j \mathbf{\Lambda}_j^m(s)$$

	$\operatorname{Equations}_{\circ\circ\circ\circ\circ\circ\circ\circ}$	Code Verification	
The Slot E	quation		

The magnetic current along the slot is modeled using a waveguide model:

$$\mathbf{s} \cdot (\mathbf{J}^{\pm} \times \mathbf{n}^{\pm}) + \frac{j\omega\epsilon}{2wL(k^2 - \beta_x^2)} \sum_{p=1}^{\infty} \beta_{y_p} \int_0^L \sin\left(\frac{p\pi s}{L}\right) \sin\left(\frac{p\pi s'}{L}\right) \times$$

 $\left(\pm \left[I_m^-(s') - I_m^+(s')\right] \tan(\beta_{y_p} d/2) + \left[I_m^+(s') + I_m^-(s')\right] \cot(\beta_{y_p} d/2)\right) ds' = 0$

 $I_m(0) = I_m(L) = 0$

s is the direction of the wire $(\mathbf{I}_m = I_m(s)\mathbf{s})$

Superscripts - and + denote exterior and interior

Effective wire radius \boldsymbol{a} obtained from conformal mapping using \boldsymbol{w} and \boldsymbol{d}

 β_α is the propagation constant in the α direction

Project slot equation onto 1D basis functions

$\mathbf{Equations}$	Code Verification	

Find $\mathbf{J}_h \in \mathbb{V}_h$ and $\mathbf{I}_h \in \mathbb{V}_h^m$, such that

Discretized Problem

 $a_{\mathcal{E},\mathcal{E}}(\mathbf{J}_h, \mathbf{\Lambda}_i) + a_{\mathcal{E},\mathcal{M}}(\mathbf{I}_h, \mathbf{\Lambda}_i) = b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_i) \quad \text{for } i = 1, \dots, n_b \quad \text{(EFIE)}$ $a_{\mathcal{M},\mathcal{E}}(\mathbf{J}_h, \mathbf{\Lambda}_i^m) + a_{\mathcal{M},\mathcal{M}}(\mathbf{I}_h, \mathbf{\Lambda}_i^m) = 0 \quad \text{for } i = 1, \dots, n_b^m \quad \text{(Slot)}$

Evaluate EFIE on exterior and interior surfaces: $n_b^- + n_b^+$ unknowns for \mathbf{J}_h

Evaluate slot equation on exterior and interior wires: $n_b^{m-} + n_b^{m+}$ unknowns for \mathbf{I}_h

	$\stackrel{\rm Equations}{\circ\circ\circ\circ\circ\circ\circ}$	Code Verification	
Matrix-Veo	tor Form		

 $\mathbf{Z}\mathcal{J}^{h} = \mathbf{V}$

In matrix–vector form, solve for \mathcal{J}^h :

$$\mathbf{Z} = \begin{bmatrix} \mathbf{A}^{-} & \mathbf{0} & \mathbf{B}^{-} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}^{+} & \mathbf{0} & \mathbf{B}^{+} \\ \mathbf{C}^{-} & \mathbf{0} & \mathbf{D}_{\sim}^{-} & \mathbf{D}_{\sim}^{-} \\ \mathbf{0} & \mathbf{C}^{+} & \mathbf{D}_{\sim}^{+} & \mathbf{D}_{\sim}^{+} \end{bmatrix}, \qquad \mathcal{J}^{h} = \begin{cases} \mathbf{J}^{h^{-}} \\ \mathbf{J}^{h^{+}} \\ \mathbf{I}^{h^{-}} \\ \mathbf{I}^{h^{+}} \end{cases}, \qquad \mathbf{V} = \begin{cases} \mathbf{V}^{\mathcal{E}^{-}} \\ \mathbf{V}^{\mathcal{E}^{+}} \\ \mathbf{0} \\ \mathbf{0} \end{cases},$$

Impedance matrix Current vector Excitation vector

where

eno et al

$$\begin{aligned} A_{i,j} &= a_{\mathcal{E},\mathcal{E}}(\mathbf{\Lambda}_j, \mathbf{\Lambda}_i), \quad B_{i,j} &= a_{\mathcal{E},\mathcal{M}}(\mathbf{\Lambda}_j^m, \mathbf{\Lambda}_i), \quad C_{i,j} &= a_{\mathcal{M},\mathcal{E}}(\mathbf{\Lambda}_j, \mathbf{\Lambda}_i^m), \quad D_{i,j} &= a_{\mathcal{M},\mathcal{M}}(\mathbf{\Lambda}_j^m, \mathbf{\Lambda}_i^m), \\ J_j^h &= J_j, \qquad I_j^h &= I_j, \qquad V_j^{\mathcal{E}} &= b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_i) \end{aligned}$$

$$\begin{aligned} \text{More compactly:} \qquad \mathbf{Z} &= \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}, \qquad \mathcal{J}^h &= \begin{cases} \mathbf{J}^h \\ \mathbf{I}^h \end{cases}, \qquad \mathbf{V} &= \begin{cases} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{cases} \end{aligned}$$

$$\begin{aligned} \text{reno et al.} \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \text{Code Verification for a Deep Electromagnetic Slot Model} \end{aligned}$$

$$\begin{aligned} \text{16 / 38} \qquad \text{in Axional laboratories} \end{aligned}$$

Verification for a Deep Electromagnetic Slot

Introduction 0000000 Equations 0000000 Code Verification $\circ \circ \circ \circ \circ \circ \circ \circ \circ$

Numerical Examples

Summary 00

Outline

- Introduction
- Governing Equations
- Code-Verification Approaches
 - Manufactured Solutions
 - Solution-Discretization Error
 - Numerical-Integration Error
 - Manufactured Green's Function
- Numerical Examples
- Summary

Code Verification 000000 Manufactured Solutions for the EFIE

 $r_{\mathcal{E}_{\varepsilon}}(\mathbf{J}, \mathbf{I}_{m}) = a_{\mathcal{E},\mathcal{E}}(\mathbf{J}, \mathbf{\Lambda}_{i}) + a_{\mathcal{E},\mathcal{M}}(\mathbf{I}_{m}, \mathbf{\Lambda}_{i}) - b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_{i}) = 0$ Continuous: Discretized: $r_{\mathcal{E}_i}(\mathbf{J}_h, \mathbf{I}_h) = a_{\mathcal{E}, \mathcal{E}}(\mathbf{J}_h, \mathbf{\Lambda}_i) + a_{\mathcal{E}, \mathcal{M}}(\mathbf{I}_h, \mathbf{\Lambda}_i) - b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_i) = 0$

Method of manufactured solutions modifies discretized equations:

$$\mathbf{r}_{\mathcal{E}}(\mathbf{J}_{h},\mathbf{I}_{h})=\mathbf{r}_{\mathcal{E}}(\mathbf{J}_{\mathrm{MS}},\mathbf{I}_{\mathrm{MS}})$$

 \mathbf{J}_{MS} and \mathbf{I}_{MS} are manufactured solutions, $\mathbf{r}_{\mathcal{E}}(\mathbf{J}_{MS}, \mathbf{I}_{MS})$ is computed exactly

New Discretized:
$$a_{\mathcal{E},\mathcal{E}}(\mathbf{J}_h, \mathbf{\Lambda}_i) + a_{\mathcal{E},\mathcal{M}}(\mathbf{I}_h, \mathbf{\Lambda}_i) = \underbrace{a_{\mathcal{E},\mathcal{E}}(\mathbf{J}_{\mathrm{MS}}, \mathbf{\Lambda}_i) + a_{\mathcal{E},\mathcal{M}}(\mathbf{I}_{\mathrm{MS}}, \mathbf{\Lambda}_i)}_{= b_{\mathcal{E}}(\mathbf{E}^{\mathcal{I}}, \mathbf{\Lambda}_i): \text{ implement via } \mathbf{E}^{\mathcal{I}}}$$

$$\begin{split} \mathbf{E}^{\mathcal{I}}(\mathbf{x}) &= \frac{j}{\epsilon \omega} \int_{S'} \left[k^2 \mathbf{J}_{\mathrm{MS}}(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') + \nabla' \cdot \mathbf{J}_{\mathrm{MS}}(\mathbf{x}') \nabla G(\mathbf{x}, \mathbf{x}') \right] dS' + Z_s \mathbf{J}_{\mathrm{MS}}(\mathbf{x}) \\ &- \frac{1}{4} (\mathbf{n}(\mathbf{x}) \times \mathbf{I}_{\mathrm{MS}}(\mathbf{x})) \delta_{\mathrm{slot}}(\mathbf{x}) + \frac{1}{4\pi} \int_0^L \mathbf{I}_{\mathrm{MS}}(s') \times \int_0^{2\pi} \nabla' G(\mathbf{x}, \mathbf{x}') d\phi' ds' \end{split}$$

MMS incorporated through $\mathbf{E}^{\mathcal{I}}$ – no additional source term required

18 / 38 👘 Sandia National Laboratories

Continuous:
$$r_{\mathcal{M}_i}(\mathbf{J}, \mathbf{I}_m) = a_{\mathcal{M}, \mathcal{E}}(\mathbf{J}, \mathbf{\Lambda}_i^m) + a_{\mathcal{M}, \mathcal{M}}(\mathbf{I}_m, \mathbf{\Lambda}_i^m) = 0$$

Discretized:
$$r_{\mathcal{M}_i}(\mathbf{J}_h, \mathbf{I}_h) = a_{\mathcal{M}, \mathcal{E}}(\mathbf{J}_h, \mathbf{\Lambda}_i^m) + a_{\mathcal{M}, \mathcal{M}}(\mathbf{I}_h, \mathbf{\Lambda}_i^m) = 0$$

Method of manufactured solutions modifies discretized equations:

$$\mathbf{r}_{\mathcal{M}}(\mathbf{J}_{h},\mathbf{I}_{h})=\mathbf{r}_{\mathcal{M}}(\mathbf{J}_{\mathrm{MS}},\mathbf{I}_{\mathrm{MS}})$$

New Discretized:

$$a_{\mathcal{M},\mathcal{E}}(\mathbf{J}_{h}, \mathbf{\Lambda}_{i}^{m}) + a_{\mathcal{M},\mathcal{M}}(\mathbf{I}_{h}, \mathbf{\Lambda}_{i}^{m}) = \underbrace{a_{\mathcal{M},\mathcal{E}}(\mathbf{J}_{\mathrm{MS}}, \mathbf{\Lambda}_{i}^{m}) + a_{\mathcal{M},\mathcal{M}}(\mathbf{I}_{\mathrm{MS}}, \mathbf{\Lambda}_{i}^{m})}_{= 0: \text{ no source term needed}}$$

Given \mathbf{J}_{MS} , solve for $\mathbf{I}_m(s) = I_m(s)\mathbf{s}$ to avoid source term $J_s(s) = \sum_{q=1}^{\infty} J_{s_q} \sin\left(\frac{q\pi s}{L}\right), \qquad J_{s_q} = \frac{2}{L} \int_0^L J_s(s) \sin\left(\frac{q\pi s}{L}\right) ds,$ $I_m(s) = \sum_{q=1}^{\infty} I_{m_q} \sin\left(\frac{q\pi s}{L}\right), \qquad I_{m_q}^{\pm} = \frac{jw(k^2 - \beta_x^2)}{\beta_{y_q}\omega\epsilon} \left([J_{s_q}^+ + J_{s_q}^-]\tan(\beta_{y_q}d/2) \mp [J_{s_q}^+ - J_{s_q}^-]\cot(\beta_{y_q}d/2)\right)$

Freno et al.

Code Verification for a Deep Electromagnetic Slot Mode

- Solution-Discretization Error
 - Error due to basis-function approximations of solutions:

$$\mathbf{J}_h(\mathbf{x}) = \sum_{j=1}^{n_b} J_j \mathbf{\Lambda}_j(\mathbf{x}), \qquad \mathbf{I}_h(s) = \sum_{j=1}^{n_b^m} I_j \mathbf{\Lambda}_j^m(s)$$

• Measured with discretization errors: $\mathbf{e}_{\mathbf{I}} = \mathbf{J}^h - \mathbf{J}_n$, $\mathbf{e}_{\mathbf{I}} = \mathbf{I}^h - \mathbf{I}_s$.

$$\|\mathbf{e}_{\mathbf{J}}\| \le C_{\mathbf{J}} h^{p_{\mathbf{J}}}, \qquad \|\mathbf{e}_{\mathbf{I}}\| \le C_{\mathbf{I}} h^{p_{\mathbf{I}}}$$

- J_{n_i} : component of \mathbf{J}_{MS} flowing from T_i^+ to T_i^-
- I_{s_i} : component of \mathbf{I}_{MS} flowing along s at s_i
- C: function of solution derivatives
- h: measure of mesh size
- p: order of accuracy
- Compute p from $\|\mathbf{e}\|$ across multiple meshes (expect p = 2 for these bases)
- Avoid numerical-integration error if integrating exactly

- + $\delta_{\rm slot}$ introduces discontinuity due to wire interaction with surface
- Discontinuity impacts $\mathbf{E}^{\mathcal{I}}$ for MMS
- Discontinuity will contaminate convergence studies: $\mathcal{O}(h^2) \rightarrow \mathcal{O}(h)$
- Discontinuity denoted by \mathbf{B}_1 in $\mathbf{Z} = \begin{bmatrix} \mathbf{A} & (\mathbf{B}_1 + \mathbf{B}_2) \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$

• Since $\mathbf{B}_1 = -\frac{1}{4}\mathbf{C}^T$, use \mathbf{C} to cancel contribution from \mathbf{B}_1 and modify $\mathbf{E}^{\mathcal{I}}$:

$$\mathbf{Z} = \begin{bmatrix} \mathbf{A} & (\mathbf{B}_1 + \mathbf{B}_2) \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

- Correctness of \mathbf{B}_1 is assessed by successful removal using \mathbf{C}
- Correctness of ${\bf C}$ is assessed through the mesh-convergence study

- Error due to quadrature integral evaluation $(\cdot)^q$ on both sides of equations
- Measure numerical-integration error:

$$e_a = \mathcal{J}^H (\mathbf{Z}^q - \mathbf{Z}) \mathcal{J}, \qquad e_b = \mathcal{J}^H (\mathbf{V}^q - \mathbf{V}),$$

where $\mathcal{J} = \left\{ \begin{aligned} \mathbf{J}_n \\ \mathbf{I}_s \end{aligned} \right\}$

- Solution-discretization error is canceled
- $|e_a| \le C_a h^{p_a}$ and $|e_b| \le C_b h^{p_b}$

C: function of integrand derivatives p: order of accuracy of quadrature rules

• With multiple meshes, compute p from |e|

Integrals with G cannot be computed analytically or, when $R \to 0$, accurately

Inaccurately computing integrals on either side contaminates convergence studies

Manufacture Green's function: $G_{\rm MS}(R) = G_0 \left(1 - \frac{R^2}{R_m^2}\right)^q$, $R_m = \max_{\mathbf{x}, \mathbf{x}' \in S} R$ and $q \in \mathbb{N}$

Reasoning:

1) Even powers of R permit integrals to be computed analytically 2) $G_{\rm MS}$ increases when R decreases, as with actual G

Freno et al. Code Verification for a Deep Electromagnetic Slot Model

Introduction 0000000 Equations 0000000 Code Verification

Numerical Examples

Summary 00

Outline

- Introduction
- Governing Equations
- Code-Verification Approaches
- Numerical Examples
 - Domain and Parameters
 - Manufactured Surface Current
 - Magnetic Current
 - Solution-Discretization Error
 - Numerical-Integration Error
- Summary

25 /

- Manufacture solutions for 2D strips of class ${\cal C}^2$
- Wrap strips around lateral surfaces of prisms
- Solutions are product of ξ and η dependencies
 - $\,\xi$ dependency: sine function with single period
 - η dependency: linear combination of odd-harmonic sine functions
- Current flows along ξ ; at $s = \{0, L\}, J_{\xi} = 0$

Introduction 0000000	Equations	Code Verification	Numerical Examples	Summary 00

Magnetic Current

• For a given \mathbf{J}_{MS} , $\mathbf{I}_m(s) = I_m(s)\mathbf{s}$ is an infinite series that needs to be truncated

$$I_{m_Q}(s) = \sum_{q=1}^{Q} I_{m_{q'}} \sin\left(\frac{q'\pi s}{L}\right), \qquad q' = 2q - 1$$

-3

-4

-5

-6

-8

_9

-2.5

-3.0

-3.5

-4.0

-4.5

-5.0

-5.5

0.60.8 1.0 1.21.4 1.61.82.0

 $O(q^{-4}$

 $O(Q^{-2})$

Exterior

--- Interior

0.81.01.2

 $og_{10}(\varepsilon/I_0)$

Numerical Examples

 \leftarrow Exterior, $d = d_1 \rightarrow$ Interior, $d = d_1$

 \rightarrow Exterior, $d = d_2 \rightarrow$ Interior, $d = d_2$

 \rightarrow Exterior, $d = d_3 \rightarrow$ Interior, $d = d_3$

 $\log_{10} q$

 $\varepsilon = |I_{m_{a'}}|$

 $\varepsilon = \|e_{J_O}(s)\|_{\infty}$

Sine Series Convergence

- J_s sine coefficients are $\mathcal{O}(q^{-3})$
- I_m sine coefficients are $\mathcal{O}(q^{-4})$
- $\|e_{J_Q}(s)\|_{\infty} = \max_{s \in [0, L]} |J_{s_Q}(s) J_s(s)|$ is $\mathcal{O}(Q^{-2}) \stackrel{\stackrel{\sim}{\underset{u=0}{\overset{\sim}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}}{\overset{\circ}}$
- $||e_{I_Q}(s)||_{\infty} = \max_{s \in [0, I]} |I_{m_Q}(s) I_m(s)|$ is $\mathcal{O}(Q^{-3})$
- Set $Q \sim \sqrt{n_t}$ to reduce truncation error faster
 - Basis-function error is $\mathcal{O}(h^2)$
 - I_m truncation error is $\mathcal{O}(h^3)$

 $\log_{10} Q$

1.61.8 2.0

• Discontinuity present:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix}$$

• Convergence rates for Q = 1 and $Q \sim \sqrt{n_t}$ are $\mathcal{O}(1)$ and $\mathcal{O}(h)$

• Discontinuity present:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix}$$

• Convergence rates for Q = 1 and $Q \sim \sqrt{n_t}$ are $\mathcal{O}(h^2)$

• Discontinuity removed from Z using C, corresponding MMS source term omitted in $\mathbf{V}^{\mathcal{E}}$:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & (\mathbf{B}_1 + \mathbf{B}_2) \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix}$$

- Convergence rates for Q = 1 and $Q \sim \sqrt{n_t}$ are $\mathcal{O}(h^2)$
- Correct implementation of \mathbf{B}_1 suggested by its removal using \mathbf{C}
- Correct implementation of C suggested by expected convergence rates

• Discontinuity removed from Z using C, corresponding MMS source term omitted in $\mathbf{V}^{\mathcal{E}}$:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & (\mathbf{\mathcal{B}}_1 + \mathbf{B}_2) \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \mathbf{J}^h \\ \mathbf{I}^h \end{pmatrix} = \begin{pmatrix} \mathbf{V}^{\mathcal{E}} \\ \mathbf{0} \end{pmatrix}$$

- Convergence rates for Q = 1 and $Q \sim \sqrt{n_t}$ are $\mathcal{O}(h^2)$ and $\mathcal{O}(1)$
- Correct implementation of \mathbf{B}_1 suggested by its removal using \mathbf{C}
- Correct implementation of C suggested by expected convergence rates

0000000	

Equations 0000000 Code Verification

Numerical Examples

Summary 00

Numerical Integration

- Surface integrals evaluated using 2D triangle quadrature rules
- Wire integrals evaluated using 1D bar quadrature rules

Maximum integrand degree	Number of 2D points		Convergence rate
1	1	1	$\mathcal{O}(h^2)$
2	3		${egin{array}{c} {\cal O}(h^2) \ {\cal O}(h^4) \end{array}}$
3	4	2	$\mathcal{O}(h^4)$
4	6		$\mathcal{O}(h^6)$
5	7	3	$\mathcal{O}(h^6)$

- 2D points: [number for test integral] × [number for source integral]
- 1D points: number of 1D points with same convergence rate as 2D points
- Convergence rates are as expected for Q = 1 and $Q \sim \sqrt{n_t}$

- 2D points: number for test integral
- 1D points: number of 1D points with same convergence rate as 2D points
- Convergence rates are as expected for Q = 1
- Convergence rates are limited to $\mathcal{O}(h^4)$ for $Q \sim \sqrt{n_t}$ since $\left| \int_0^L (I_{m_Q}(s) I_m(s)) ds \right|$ is $\mathcal{O}(Q^{-4})$

Equations

Code Verification

Numerical Examples

Summary •0

Outline

- Introduction
- Governing Equations
- Code-Verification Approaches
- Numerical Examples
- Summary
 - Closing Remarks

Introduction 0000000 Equations 0000000 Code Verification

Numerical Examples

Summary ○●

Closing Remarks

3 error sources in electromagnetic integral equations:

- Domain-discretization error avoided
 - Considered planar surfaces
- Solution-discretization error isolated
 - Manufactured \mathbf{J} , chose \mathbf{I}_m to avoid source term
 - Manufactured Green's function (to integrate exactly)
 - Removed discontinuity to measure convergence rates without contamination
 - Demonstrated implications of sine series truncation error on convergence
- Numerical-integration error isolated
 - Removed solution-discretization error
 - Demonstrated implications of sine series truncation error on convergence

Achieved expected orders of accuracy

	$\operatorname{Equations}$ 0000000	Code Verification		
Questions?	bafre	no@sandia.gov	brianfreno.g	ithub.io
Additional I	nformation			
	olutions for the meth	od-of-moments implementation 021) arXiv:2012.08681	of the EFIE	
Code-verification	*	ohnson nethod-of-moments implementa 022) arXiv:2106.13398	ation of the EFIE	
	n for practically singu	ılar equations <mark>022) arXiv:2204.01785</mark>		
	n techniques for the r	nethod-of-moments implementa 023) arXiv:2209.09378	ation of the MFIE	
	n techniques for the r	nethod-of-moments implementa 023) arXiv:2302.06728	ation of the CFIE	
Manufactured so		Dohme, J. Kotulski omagnetic slot model 024) arXiv:2406.14573		
• B. Freno, N. Ma	tula, R. Pfeiffer, V. l	Dang		

 B. Freno, N. Matula, R. Pfeiffer, V. Dang Code-verification techniques for an arbitrary-depth electromagnetic slot model Engineering Analysis with Boundary Elements (2025) arXiv:2503.04004

The Sandia National Laboratories