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Ablation

Ablative processes are important in many scientific and engineering problems

• Glacial erosion, fire protection, medical procedures, and industrial
manufacturing processes

• Ablative materials used as sacrificial heat shields for weapons, rockets,
and hypersonic reentry vehicles
– Accurate prediction of mass and energy loss necessary to minimize weight

and cost of heat shield
– Changes in outer mold line from surface erosion important in hypersonic

flight

• Establishing credibility in ablative models is essential
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Verification and Validation

Credibility of computational physics codes requires verification and validation

• Validation assesses how well models represent physical phenomena
– Computational results are compared with experimental results
– Assess suitability of models, model error, and bounds of validity

• Verification assesses accuracy of numerical solutions against expectations
– Solution verification estimates numerical error for particular solution
– Code verification verifies correctness of numerical-method implementation
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Code Verification

Code verification is focus of this work

• Governing equations are numerically discretized
– Discretization error is introduced in solution

• Seek to verify discretization error decreases with refinement of discretization
– Should decrease at an expected rate

• Use manufactured and/or exact solutions to compute error
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Code Verification

Code verification demonstrated in many computational physics disciplines
• Fluid dynamics
• Solid mechanics
• Heat transfer

• Multiphase flows
• Electrodynamics
• Electromagnetism

• Fluid–structure interaction
• Radiation hydrodynamics

Existing ablation code verification has used simple exact solutions

We present an approach for developing nonintrusive manufactured solutions
• Manufactured solutions more thoroughly test code capabilities
• Approach does not require code modification
• Instead of introducing a source term, we manufacture ablation parameters
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Nonintrusive Manufactured Solutions

• Optionally transform governing equations

• Derive solutions that satisfy nonablating boundary conditions

• Manufacture parameters to satisfy ablating boundary condition
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Heat Conduction

For a solid, the energy equation due to heat conduction is

∂

∂t
(ρe) +∇ · q = 0

Internal energy e and heat flux q are modeled by

e = e0 +
∫ T

T0
cp(T̂ )dT̂ , q = −k(T )∇T

The heat equation is

ρcp(T )∂T
∂t
−∇ · (k(T )∇T ) = 0

ρ is constant density
cp(T ) is specific heat capacity
k(T ) is thermal conductivity of isotropic material
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Ablating Surface Parameterization

Time-dependent material domain is Ω(t) with boundary Γ = Γs ∪ Γ0

• Γs is ablating surface: Γs = {(x, y) : x = xs, y = ys}
– arbitrarily parameterized by xs(ξ, t) = (xs(ξ, t), ys(ξ, t))
– ξ ∈ [0, 1] increases in counterclockwise direction

• Γ0 is non-ablating surface

Γ s

Γ0

Γ0

Γ 0 Γs

ξξ

Γs

Γ0

Γ0

Γ 0
Γs

ξ ξ
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Recession Definition

Along Γs, material recedes by s(ξ, t) in direction opposite to outer normal

Recession rate defined by

ṡ(ξ, t) = −∂xs
∂t

(ξ, t) · ns(ξ, t),

where the outer unit normal vector is defined by

ns(ξ, t) = 1√
(∂xs/∂ξ)2 + (∂ys/∂ξ)2

∂

∂ξ

{
ys
−xs

}
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Recession Rate and Heat Flux Modeling

Recession rate modeled by ṡ(ξ, t) = B′(Ts, pe)Ce
ρ

Heat flux along ablating surface qs = qs · ns modeled by

qs = Ce [hw(Ts, pe)− hr]︸ ︷︷ ︸
convective heat flux

+ ρṡ [hw(Ts, pe)− hs(Ts)]︸ ︷︷ ︸
energy loss from ablation

+ εσ
(
T 4
s − T 4

r

)︸ ︷︷ ︸
radiative flux

Ts(ξ, t) = T (xs(ξ, t), t) is temperature along ablating surface
pe(ξ, t) is pressure at outer edge of boundary layer
B′(Ts, pe) is nondimensionalized char ablation rate
Ce(ξ, t) is heat transfer coefficient (ρeueCh)
hw(Ts, pe) is wall enthalpy
hr(ξ, t) is recovery enthalpy
hs(ξ, t) is solid enthalpy, computed from hs(Ts) = h0 +

∫ Ts
T0
cp(T̂ )dT̂

ε is emissivity
σ is Stefan–Boltzmann constant
Tr = 300 K is radiation reference temperature
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Discretization Error

A governing system of equations can be written generally as

r(u; µ) = 0

r represents equations, u(x, t) is state vector, and µ is parameter vector

Discretize in time and space to get

rh(uh; µ) = 0

rh is residual of discretized equations and uh is solution to discretized equations

Discretization error is eu = uh − u, and its norm ‖eu‖ ≈ Chp

C is function of solution derivatives
h is measure of discretization size
p is order of accuracy

Convergence studies of ‖eu‖ to measure p
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Solutions

eu can only be measured if u is known

Exact solutions
• Negligible implementation effort: r(uExact; µ) = 0
• Limited cases, span small subset of application space

Manufactured solutions from forcing vector
• Do not satisfy original equations: r(uMS; µ) 6= 0
• Require source term: rh(uh; µ) = r(uMS; µ)
• Manufactured to exercise features of interest

Manufactured solutions from manufactured parameters
• Favorable properties similar to traditional manufactured solutions
• Negligible implementation effort: r(u; µMP) = 0
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Manufactured Solutions from Manufactured Parameters

• Manufactured parameters do not require code modification

• Compute u from solutions to governing equations

• For unsatisfied boundary conditions, manufacture underlying parameters
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Heat Equation Solution

For k(T ) = k̄f(T ) and cp(T ) = c̄pf(T ), heat equation is

∂θ

∂t
− ᾱ∆θ = 0,

where θ =
∫
T
f(T ′)dT ′ + Ck = F (T ) (Kirchhoff transformation)

Disregard time dependency of domain and assume we can separate variables:

θ(x, t) =
∞∑
i=0

∞∑
j=0

θ̂i,j(t)ϕi,j(x)

ϕi,j(x) is orthogonal basis
i and j are indices associated with the basis of different spatial coordinates

Freno et al. Nonintrusive Manufactured Solutions for 2D Ablation 19 / 43



Introduction Equations Verification Solutions Reconciliation Numerical Examples Summary

Time Dependency

Inserting solution expression into equation yields

1
ᾱ

θ̂′i,j(t)
θ̂i,j(t)

= ∆ϕi,j(x)
ϕi,j(x) = −λi,j

For the time dependency,

θ̂i,j(t) = θ̂i,j0e
−ᾱλi,jt

Interested in λi,j < 0
• Focusing on ablative processes and interested in verifying time integrator
• Interested in cases where temperature increases with time
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Cartesian Coordinates
Separate x and y dependencies:

ϕi,j(x) = ui(x)vj(y)

From v′j(0) = v′j(H) = 0,

vj(y) = cos(jπy/H)

From u′(0) = 0,

ui(x) =
{

cosh(|µi|x) for µ2
i < 0

cos( µi x) for µ2
i ≥ 0

µi depends on BC at x = xs, and

λi,j = µ2
i + ν2

j ,

where νj = jπ/H

−
k
(T
s
)∂
T

∂
n

(x
s
,t

)=
q s

∂T

∂y
(x,H, t) = 0

∂T

∂y
(x, 0, t) = 0

∂
T

∂
x

(0
,y
,t

)=
0
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Polar Coordinates

Partially separate r and φ dependencies:

ϕi,j(x) = ui,j(r)vj(φ)

From v′j(0) = v′j(φ̄) = 0,

vj(φ) = cos(jπφ/φ̄)

From u′(r0) = 0 and letting r′ =
√
|λi,j |r,

ui,j(r) =


Ki,jIνj (r′) + Ii,jKνj (r′) for λi,j < 0
Yi,jJνj (r′) + Ji,jYνj (r′) for λi,j > 0

cosh(νj ln(r/r0)) for λi,j = 0

λi,j depends on boundary condition at r = rs, and νj = jπ/φ̄
Iα and Kα are modified Bessel functions of 1st and 2nd kind Jα and Yα are Bessel functions of 1st and 2nd kind

Ki,j = Kνj−1(r′0) +Kνj+1(r′0) Yi,j = Yνj−1(r′0)− Yνj+1(r′0)
Ii,j = Iνj−1(r′0) + Iνj+1(r′0) Ji,j = −Jνj−1(r′0) + Jνj+1(r′0)

−k(Ts)
∂T

∂n
(xs, t) = qs

∂T

∂r
(r0, φ, t) = 0

∂T

∂φ
(r, 0, t) = 0

∂
T

∂
φ

(r
,φ̄
,t

)=
0
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Overview

• Solutions disregard boundary condition on ablating surface

• Manufacture underlying functions of ablating boundary condition

• Can manufacture arbitrary solutions without adding source term

• Much freedom, provided functions are sufficiently smooth

• Desirable properties take precedence over being physically realizable
– Sufficient number of finite nontrivial derivatives
– Elementary function composition

Freno et al. Nonintrusive Manufactured Solutions for 2D Ablation 24 / 43



Introduction Equations Verification Solutions Reconciliation Numerical Examples Summary

Manufacture Temperature and Ablating Surface

Manufacture T (x, t), which requires manufacturing

• Material properties: k(T ) = k̄f(T ), cp(T ) = c̄pf(T ) ρ, and ε

– k̄, c̄p, ρ → ᾱ

– f(T ) relates θ(x, t) and T (x, t)
– Manufacture f(T ) to easily compute integral F (T ) and its inverse F−1(θ)

• Transformed temperature: θ(x, t)

– Truncate θ(x, t) =
∑∞
i=0
∑∞
j=0 θ̂i,j(t)ϕi,j(x)

– Specify θ̂i,j0 in θ̂i,j(t)
– Specify µi in ui(x) and λi,j (Cartesian) or λi,j (polar)

• Compute temperature from T (x, t) = F−1(θ(x, t))

Manufacture xs(ξ, t) to compute ns(ξ, t) and ṡ(ξ, t)
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Manufacture Parameters

Manufacture parameters to satisfy boundary condition on Γs:

−k(Ts)
∂T

∂n
= Ce [hw(Ts, pe)− hr] + ρṡ [hw(Ts, pe)− hs(Ts)] + εσ

(
Ts

4 − Tr4)
and recession rate:

ṡ(ξ, t) = B′(Ts, pe)Ce
ρ

• ∂T
∂n , Ts, k(Ts), ρ, ε, Tr, and ṡ(ξ, t) already determined

• hs(Ts) = h0 +
∫ Ts
T0
cp(T̂ )dT̂ computed from Ts and cp(T )

• Manufacture B′(Ts, pe) and pe(ξ, t)

• Ce(ξ, t) computed from ṡ(ξ, t), B′(Ts, pe), pe(ξ, t), and ρ

• hw(Ts, pe) and hr(ξ, t) need to be determined
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= Ce [hw(Ts, pe)− hr] + ρṡ [hw(Ts, pe)− hs(Ts)] + εσ

(
Ts

4 − Tr4)
and recession rate:
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ṡ(ξ, t) = B′(Ts, pe)Ce
ρ

• ∂T
∂n , Ts, k(Ts), ρ, ε, Tr, and ṡ(ξ, t) already determined
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• hs(Ts) = h0 +
∫ Ts
T0
cp(T̂ )dT̂ computed from Ts and cp(T )

• Manufacture B′(Ts, pe) and pe(ξ, t)
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Manufacture Parameters (continued)
Boundary condition and recession rate can be combined:

qs = Ce
(
hw(Ts, pe)

[
1 +B′(Ts, pe)

]
− hr −B′(Ts, pe)hs(Ts)

)
+ εσ

(
T 4
s − T 4

r

)
• Prevent BC instabilities due to perturbations (e.g., discretization errors)

• Impose ∂qs

∂Ts
≥ 0 so perturbations do not grow

• For radiative contribution, ∂
∂Ts

(qsrad.) = 4εσT 3
s ≥ 0

• For non-radiative contribution, set ∂
∂Ts

(qsnon-rad.) = 0:

hw(Ts, pe)
[
1 +B′(Ts, pe)

]
−B′(Ts, pe)hs(Ts) = g(pe)

→ hw(Ts, pe) = B′(Ts, pe)hs(Ts) + g(pe)
1 +B′(Ts, pe)

• Set g(pe) = 0

• hr(ξ, t) can be computed since other parameters are known
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Overview

• Demonstrate methodology on two problems: Cartesian and polar

• Spatial domain discretized with O(h2) finite elements

• Backward Euler time integration is O(h)

• Each discretization doubles elements in each dimension, quarters time step

• Piecewise linear interpolation of tabulated data is O(h2) – halve spacing

−
k
(T
s
)∂
T

∂
n

(x
s
,t

)=
q s

∂T

∂y
(x,H, t) = 0

∂T

∂y
(x, 0, t) = 0

∂
T

∂
x

(0
,y
,t

)=
0

−k(Ts)
∂T

∂n
(xs, t) = qs

∂T

∂r
(r0, φ, t) = 0

∂T

∂φ
(r, 0, t) = 0

∂
T

∂
φ

(r
,φ̄
,t

)=
0
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Error Norms

Measure error in temperature using the norm

εT = max
t∈[0, t̄]

‖Th(x, t)− T (x, t)‖2

• L2-norm of error computed over spatial domain
• Maximum of L2-norms over time

Measure error in ablating surface using the norm

εxs = max
t∈[0, t̄]

‖xsh
(ξ, t)− xs(ξ, t)‖2

• L2-norm of error computed over ablating surface
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Mesh Deformation and Common Parameters

• Mesh deformation from Gent hyperelastic mesh stress model

• ρ = 1000 kg/m3, k̄ = 0.7 W/m/K, ᾱ = {10−8, 10−7, 10−6, 10−5} m2/s → c̄p

• With (ε = 0.9) and without (ε = 0) radiative flux

• Quartering (∆t/4) and halving (∆t/2) the time step

• Manufacture

B′(Ts, pe) = exp
( 1

1000
Ts

T̄
− 1

50
pe
p̄

)
,

where T̄ = 1 K, pe(t) = p̄e5t/t̄/200, p̄ = 101,325 Pa, and t̄ = 5 s
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Cartesian Coordinates: Temperature and Recession

• Manufacture f(T ) = 4/3
(
T/T̄

)1/3
→ T (x, t) = F−1(θ) =

(
T̄ θ(x, t)3

)1/4

– T̄ = 3000 K

• Truncate θ(x, t) = ∑∞
i=0

∑∞
j=0 θ̂i,j(t)ϕi,j(x) to max i = 0 and max j = 1

– v0(y) = 1 and v1(y) = cos(πy/H) permit y variation and θ(x, t) > 0
– u0(x) = cosh(3x/(2W )) permits x variation and λi,j < 0

– Set θ̂0,00 = 400 K and θ̂0,10 = −100 K

– θ(x, t) = 100e22,500ᾱt
(

4− e−2500π2ᾱt cos(πy/H)
)

cosh(3x/(2W )) K

• Manufacture xs(ξ, t) =
{
W
(
1− t

t̄
1+2 sin(πξ/2)

4

)
, Hξ

}
– Initial domain is rectangle xs(ξ, 0) = {W, ξH}
– ξ related to xs by ξ = ys/H

– Set W = 1 cm, H = 2 cm, and t̄ = 5 s

Freno et al. Nonintrusive Manufactured Solutions for 2D Ablation 32 / 43



Introduction Equations Verification Solutions Reconciliation Numerical Examples Summary

Cartesian Coordinates: Temperature and Recession (ᾱ = 10−5 m2/s)
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Cartesian Coordinates: Norm of the Error for T
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ᾱ = 10−5 m2/s

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

log10

√
n

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

lo
g

1
0
(ε
T
/T̄

)

O(h2)
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Cartesian Coordinates: Norm of the Error for xs
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Polar Coordinates: Temperature and Recession

• Manufacture f(T ) = 1 → T (x, t) = θ(x, t)

• Truncate θ(x, t) = ∑∞
i=0

∑∞
j=0 θ̂i,j(t)ϕi,j(x) to max i = 0 and max j = 1

– v0(φ) = 1 and v1(φ) = cos(πφ/φ̄) permit φ variation and θ(x, t) > 0
– Set λ0,0 = λ0,1 = −22,500 m−2 for u0,0(r) and u0,1(r)

– Set θ̂0,00 = 200 K and θ̂0,10 = 300 K

• Manufacture xs(ξ, t) = rs(ξ, t) {cosφs, sinφs}

– rs(ξ, t) = r1 − (r1 − r0) t
t̄

3+cos(πξ)
8

– Initial domain is fractional annulus xs(ξ, 0) = r1{cosφs, sinφs}
– ξ related to xs by ξ = φs/φ̄

– Set r0 = 1 cm, r1 = 2 cm, φ̄ = π/2, and t̄ = 5 s
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Polar Coordinates: Temperature and Recession (ᾱ = 10−5 m2/s)
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Polar Coordinates: Norm of the Error for T
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Polar Coordinates: Norm of the Error for xs
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ᾱ = 10−5 m2/s

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

log10

√
n

−8.5

−8.0

−7.5

−7.0

−6.5

−6.0

−5.5

−5.0

lo
g

1
0
(ε

x
s
/x̄

)

O(h)

O(h2)
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Outline

• Introduction

• Governing Equations

• Manufactured Solutions

• Heat Equation Solution

• Boundary Condition Reconciliation

• Numerical Examples

• Summary
– Code-Verification Techniques
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Code-Verification Techniques

• Performed code verification for two-dimensional, non-decomposing ablation

• Derived solutions that did not require code modification

• Computed solutions to heat equations for different coordinate systems

• Manufactured boundary condition dependencies

• Demonstrated approach for two cases, which achieved expected accuracy
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Additional Information

• B. Freno, B. Carnes, N. Matula
Nonintrusive manufactured solutions for ablation
Physics of Fluids (2021)

• B. Freno, B. Carnes, V. Brunini, N. Matula
Nonintrusive manufactured solutions for non-decomposing ablation in two dimensions
Journal of Computational Physics (2022) arXiv:2110.13818
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Questions?

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

This presentation describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the presentation
do not necessarily represent the views of the U.S. Department of Energy
or the United States Government.
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